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Abstract
This paper presents the formulation of a new methodology to design adaptive structures. This design method synthesises structural
configurations that are optimum hybrids between a passive and an active structure. An optimisation scheme searches for an optimal
material distribution and actuation layout to minimise the structure whole-life energy which consists of an embodied part in the
material and an operational part for structural adaptation. Instead of using more material to cope with the effect of loads, here,
strategically located active elements redirect the internal load path to homogenise the stresses and change the shape of the structure to
keep deflections within required limits. To ensure the embodied energy saved this way is not used up to by actuation, the adaptive
solution is designed to cope with ordinary loading events using only passive load-bearing capacity whilst relying on active control to
deal with larger events that have a smaller probability of occurrence. The design methodology has been implemented for statically
determinate and indeterminate reticular structures. However, the formulation is general and could be implemented to other structural
types. Numerical simulations on a truss system case study confirm that substantial savings up to 50% of the whole-life energy can be
achieved by the adaptive solution compared to a passive solution designed using state of the art optimisation methods.

Keywords Adaptive structures . Active structural control . Shape control . Eigenstrain . Whole-life energy . Structural
optimisation

1 Introduction

1.1 Motivation

The construction industry is the major consumer of mined raw
materials (Straube 2006) contributing to more than a third of
the global energy demand (European Environment Agency
2010). Most of the environmental impact of structures are
embodied into load-bearing systems (Kaethner and Burridge
2012; Sartori and Hestnes 2007). For these reasons, it has
become important to minimise environmental and energetic
impacts of infrastructures, including buildings.

Civil structures are usually designed to meet strength and
deformation requirements for statistically calculated load
cases. The design is governed by meeting safety and service-
ability criteria to withstand rare events such as unusual crowd
loading and strong winds. Most structures are thus over-
designed for most of their service life. Structural adaptation
provides an alternative because a structure can be designed to
operate with a better material utilisation if it can counteract
actively rare loading events. Structural adaptation is here un-
derstood as a controlled shape change and redirection of the
internal load-path. To achieve this, adaptive structures are in-
tegrated with sensors (e.g. strain, vision), actuators (e.g. hy-
draulics, solid-state) and control intelligence.

In civil engineering, active control has focussed mostly on the
control of vibrations for building or bridges to improve on safety
and serviceability during exceptionally high loads (Soong 1988).
Due to concerns related to the lack of long-term reliability of
control electronics combined with long service lives of buildings
and long return periods for extreme loads, active structural control
has been recently investigated to help satisfy serviceability re-
quirements, such as deflection limits, rather than contributing
unrealistically to improvements related to the ultimate limit state
(Korkmaz 2011; Shea and Smith 1998). In this context, structural
adaptation can contribute significantly to improving civil
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structure performance. Whilst the strength of the structure cannot
be compromised, trade-offs on the stiffness can be inves-
tigated. If the structure can reduce deflections actively, its
stiffness can be tuned to better utilise the material
resulting in a lower embodied energy. The embodied en-
ergy is the energy required for material extraction, fabri-
cation and construction (Hammond and Jones 2008).
Such savings, however, are only possible at a cost of
operational energy that is required to operate the adaptive
system.

This work presents the formulation of a new computational
method to synthesise structures which are minimum energy
design. The main design criterion is minimisation of the
whole-life energy which is understood as the sum of the ener-
gy embodied in the material and the operational energy for
structural adaptation. Structural adaptation is employed to
counteract the effects of large loading events via controlled
shape changes and redirection of the internal load-path so that
the design will not be governed by peak demands that occur
rarely. The main aim is to show that through adaptation, civil
structures can be designed for minimum whole-life energy
reducing environmental impacts significantly more than when
employing traditional passive design methods and
technologies.

1.2 Previous work

1.2.1 Adaptation in structural applications

Active brace systems have been tested using hydraulic
actuators fitted as cross-bracing elements in the structure
to control its deflections (Abdel-Rohman and Leipholz
1983; Reinhorn et al. 1993; Bani-Hani and Ghaboussi
1998). Displacement control in cable-stayed bridges can
be obtained via control forces provided by the stay cables
working as active tendons (Rodellar et al. 2002; Xu et al.
2003). Active cable-tendons have been used to change the
amount of pre-stress in reinforced concrete beams and in
steel trusses to limit displacements under loading
(Schnellenbach and Steiner 2014). Integration of actuators
has been shown to be an effective way to suppress vibra-
tions via active damping in high stiffness/weight ratio
truss structures (Preumont et al. 2008; Li and Huang
2013) or via shape changes to tune the natural frequency
in underslung cable-stayed beam bridges subjected to pe-
destrian loading (Santos and Cismaşiu 2017). Actuation
has been used to modify the membrane stress state in thin
plates and shells when disturbances such as local load-
ings, cuttings or residual stress formed after formwork
removal (Sobek 1987) occur. In these cases, because the
load carrying capacity is reduced significantly, actuation

in the form of induced strain distributions or induced dis-
placement of the supports (actively controlled bearings)
has been employed to homogenise the stress field and in
so doing minimising the maximum stress governing the
design (Weilandt 2007; Neuhäuser 2014).

Active structural control has also been used for shape
control. Some all-weather stadia use deployable systems
for expandable/retractable roofs e.g. the Singapore
National Stadium (Henry et al. 2016) and the Wimbledon
Centre Court (SCX 2010). Variable geometry trusses
(VGT) are equipped with length changing actuators replac-
ing some of their members in order to achieve arbitrary
geometric configurations (within the deformational/
rotational limits of the joints) whilst high stiffness is main-
tained during deployment. Applications of this concept
have been suggested for space cranes, scaffolding and
large structural rings for antennas (Miura and Furuya
1988; Campanile 2003; Subramaniam and Kramer 1992).
Active tensegrity structures, structures whose stability de-
pends on self-stress, have been used for deployable sys-
tems (Tibert 2002) as well as for control of displacements
(Fest et al. 2003; Veuve and Smith 2015) and of the struc-
ture fundamental frequency (Santos and Micheletti 2015;
Bel Hadj Ali and Smith 2010). Active compliant struc-
tures, which can be thought of as structures working as
monolithic mechanisms (Hasse and Campanile 2009) have
been investigated for shape control of antenna reflectors
(Jenkins 2005), for shape morphing of aircraft wings to
improve on manoeuvrability (Previtali and Ermanni 2012;
Kota et al. 2003) as well as for the control of direct day-
light in buildings (Lienhard et al. 2011).

1.2.2 Design methods for adaptive structures

When the engineering design process is framed as an optimi-
sation problem, defining properly the relevant constraints
and the utility function (Hazelrigg 1998) is a difficult task
that remain a matter of debate. Most existing design strat-
egies for adaptive structures are based on optimisation
methods which aim at minimising a combination of the
control energy, structural response to external loads and
other cost functions including the mass of the structure
(Soong and Manolis 1987; Utku 1998). In most of these
design methods, the structure and the actuation system are
designed as separate systems - the location of the actua-
tors being decided a-priori (Khot 1998; Soong and
Cimellaro 2009; Molter et al. 2013). However, the deri-
vation of an optimal actuator layout is critical to minimise
control effort. The actuator layout optimisation is usually
of combinatorial nature because it involves placing a cer-
tain number of actuators within a set of available sites.
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Most of the existing methods rely on heuristics or sto-
chastic routines (Lu et al. 1992; Adam and Smith 2008;
Rhode-Barbarigos et al. 2012). Methods based on formal
analysis have been used to solve this problem in more
insightful ways including efficient enumerations and con-
tinuous relaxations (Ziegler 2005; Nyashin et al. 2005;
Campbell and Crawley 1997; Sepulveda and Schmit
1991). However, the solution of the actuator-placement
problem remains a very challenging task due to limits to
computational resources.

As already recognised by some (Utku 1998; Wada
et al. 1990; Connor 2002), novel structural configura-
tions can be generated via an integrated design approach
where the actuation system is designed as an integral part
of the structural system. Most methods for synthesis of
integrated structural and control design focus on vibra-
tion suppression (Onoda and Haftka 1987; Hiramoto and
Grigoriadis 2005; Haftka 1990; Dhingra and Lee 1995;
Skelton et al. 1992). Within the context of compliant
structures (i.e. joint-less mechanisms) relevant previous
work proposed methods for synthesis of structures with
selective compliance (Hasse and Campanile 2009).
Structures with selective compliance are designed to be
stiff against the external loads and flexible relative to the
intended deformation pattern for shape control. Simultaneous
synthesis of the structural and actuator/sensor layout for com-
pliant systems have been proposed by some (Lu and Kota
2003; Trease and Kota 2009).

The potential for using adaptation to save material
mass for civil structures has been investigated by a few.
For example, in (Cha et al. 1988; Cimellaro et al. 2008), it
was shown that simultaneous optimisation of structure-
control parameters can lead to significant material sav-
ings. Simulation studies including a nine-story frame
and a king-post bridge-beam showed that up to 45% of
the mass could be saved compared to similar passive
structures. Similarly in (Begg and Liu 2000; Sobek and
Teuffel 2001; Teuffel 2004) it was shown that combining
weight optimisation and actuator layout optimisation re-
sults in significant savings up to 70% of the mass for
reticular structures under quasi-static loading subject to
strict serviceability limits.

It has been shown that structural adaptation could be
employed to achieve substantive material savings and thus
embodied energy savings. However, whether the energy
saved by using less material makes up the energy for struc-
tural control during service life is a question that has so far
received little attention. Methods to minimise the control
power in combination with structural optimisation have
been formulated (Li et al. 2011; Smith et al. 1991;
Grigoriadis et al. 1996). However, most of these

formulations are impractical when applied to the design
of large-scale adaptive structures of complex layout, which
are usually made of many elements and degrees of free-
dom. In addition, in none of the published methods did the
governing design criteria explicitly include the whole-life
energy required during service life. This is particularly im-
portant for the design of adaptive civil structures due to
their long service life. Whole-life energy minimization is
an objective function (or utility function in Hazelrigg’s
framework (Hazelrigg 1998)) which conveniently encap-
sulates material and operational energy minimisation of
load-bearing systems. This explicitly address current and
future challenges such as material scarcity, energy deple-
tion and reduction of building environmental impacts. To
date there is no synthesis method which employs structural
adaptation in order to produce structures which are mini-
mum energy design.

1.3 Outline

In the following sections, a new methodology is proposed
that synthesises hybrid passive-adaptive structures which
are minimum energy design. This method has been for-
mulated as a dual-objective process – minimisation of the
energy embodied in the material as well as the operational
energy for structural adaptation. The method is presented
through the example of a planar reticular structure to dem-
onstrate the advantages it brings compared to an equiva-
lent passive design. Section 2 states the all-in-one prob-
lem formulation and outlines a strategy to solve such
problem using a nested approach. Section 3, 4 and 5 give
the formulation of the three main steps in which the pro-
cess is subdivided: (1) embodied energy minimisation, (2)
actuator layout optimisation and (3) computation of the
operational energy for force and shape control during ser-
vice. Section 6 shows how to coordinate the previous
steps of the design process to identify the minimum
whole-life energy design.

2 Synthesis of minimum energy adaptive
structures

2.1 All-in-one problem formulation

In this paper, the synthesis of adaptive reticular structures is
achieved through the minimisation of the whole-life energy
(Eq. 1) subject to equilibrium (Eq. 2), deflection (Eq. 3) and
stress (Eq. 4) constraints:
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These equations are stated here to frame the optimisation
problem in its generality. A preliminary description of the
notation is given here but more detail will be given throughout
the paper as the methodology unfolds.

The design variables are limited to the element cross-
section areas α, the optimal (or controlled) internal forces F,
the actuator layout actLYT and the actuator length changes ΔL
to perform force and shape control under p load cases. Note
that if nodal coordinates and the structural layout are included
in the design variables, the same formulation can readily be
extended to shape and topology optimisation. Internal force
and internal load-path have the same meaning in this paper.
The actuators are thought of as replacing a certain number of
elements (nACTs) of the structure. Actuator length variations
generally cause internal forces and nodal displacements that
are employed to counteract the effect of loading. To avoid
weight penalty due to mechanisms based on moving parts
and to reduce control complexity (Campanile 2003), structural
adaptation will be achieved without relying on defined kine-
matics (e.g. pantograph mechanisms).

Note that in this formulation the dynamic response of the
structure is not compensated by activemeans. Force and shape
control is employed here to design structures with minimum
energy, not for vibration suppression. In this study the objec-
tive is to achieve an optimal state which is load-case depen-
dent. This could be thought of as a one-to-one mapping be-
tween external loads and optimal internal forces and shape. In
addition, because active vibration control requires a substan-
tial amount of energy, a hybrid system of active (shape/force
control) and passive (e.g. tuned mass dampers, viscous
dampers in line with actuators) would be best suited to extend
this formulation to dynamics in a context where energy is a
primary concern. As dynamic is not considered, seismic de-
sign in not currently part of the methodology. For the same
reason, it is also assumed that fatigue is not a relevant limit
state although this could be included by adding appropriate
constrains.

In Eq. 1, the objective function is the sum of two terms: the
first is energy embodied in the material and the second the

operational energy needed for structural adaptation during ser-
vice. The embodied energy is obtained by multiplying the mass
of each element (αi · Li · ρi, cross-section area, length and den-
sity of the ith element respectively) by its energy intensity factor
eei (MJ/kg) which is the energy per unit mass for extraction and
manufacturing (Inventory of Carbon and Energy (ICE)
(Hammond and Jones 2008). The operational energy is what
it takes to control the internal forces from a geometrically

compatible state Fjk
COMP

(i.e. non controlled state) to an
optimal state Fjk by applying a force difference ΔFjk ¼ Fjk−
Fjk

COMP
which requires a change of shape of the structure. To

compute the operational energy, a stochastic distribution of the
occurrence for each design load case j must be assumed (see
Section 5). The load probability distribution is discretised in d
bins each corresponding to a certain load intensity occurring for
a certain number of hours Hjk. The terms ω and η are the
actuator working frequency and mechanical efficiency
respectively, which are assumed here to be constant for
simplicity (see 5.3).

The optimal internal forcesFmust satisfy equilibrium (Eq. 2)
and ultimate limit state constraints (Eq. 4) including admissible
stress and buckling. Equilibrium equations have been augmented
to account for the effect of shape change via the actuator length
changes ΔL which feature as part of the external load. BRED, C
and G are the equilibrium, self-stress and flexibility matrix re-
spectively. Similarly, the left side of Eq. 3 gives the nodal dis-
placements after the shape change caused by the actuator length
changes ΔL under loading. The nodal displacements are

constrained by a serviceability limit state (ujk
SLS ). The derivation

of Eqs. 3 and 4 are given in the appendix A.3.
The synthesis process stated in Eq. 1–4 is a dual-objective,

mixed-integer nonlinear programming problem (MINLP). It is
dual-objective because, generally, the more light-weight the
structure is (small embodied energy), the higher the operational
energy for control and vice versa. It is mixed-integer because
some design variables are continuous (cross-section area,
internal forces and control commands) whilst others are discrete
(the actuator layout). The optimization of the actuator layout
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involves assigning a certain number of active elements to a set of
available sites. For this reason, the search space grows factorially
with the number of elements of the structure (see 2.2.2). In ad-
dition, the problem is generally not convex due the effect of
element buckling constraints (Cheng 1995). Methods based on
stochastic search or non-convex MINLPs could be employed in
order to solve to optimality (Achtziger and Stolpe 2006).
However, using those methods, the synthesis process stated in
Eq. 1–4 is often impractical even for structures made of a small
number of elements and it becomes intractablewhen the structure
is made of many elements due to exponential complexity.

2.2 Nested approach

The flowchart in Fig. 1 illustrates a nested approach adopted to
carry out the synthesis process stated in Eq. 1–4. The method
comprises three main steps: (1) embodied energy minimisation,
(2) actuator layout optimisation and (3) operational energy com-
putation. These steps are nested within an outer optimisation

process which minimises the whole-life energy. In order to co-
ordinate embodied and operational energy optimisation an aux-
iliary design variable called Material Utilisation (MUT) and a
state variable called Load Activation Threshold (LAT) are intro-
duced. TheMUT is a ratio of the demand over strength capacity
but it is defined for the structure as a whole and can effectively
be thought of as a scaling factor on the allowable stress. The
MUT varies in a range of 0% <MUT ≤ 100%. The LAT is the
external load causing a state of stress and displacements that
violates a serviceability limit state (SLS). The LAT is in a one-
to-one correspondence with the MUT: the lower the MUT, the
stiffer the structure and thus the higher the activation load (LAT)
which ultimately results in a lower operational energy and vice
versa. For this reason, once the MUT is fixed the synthesis
process stated in Eq. 1–4 simplifies into a single objective prob-
lem. Because all design variables (structural + actuator layout)
are themselves function of the MUT, the objective function i.e.
the whole-life energy can be thought of as a function of one
main independent variable. This means that by varying the
MUT one can move from least-weight structures (MUT =
100%) with small embodied but large operational energy, to
stiffer structures with large embodied and smaller operational
energy consumption. Figure 2 shows the notional variation of
the total energy as the MUT varies. The outer optimisation pro-
cess performs a search that identifies the optimal MUT corre-
sponding to the minimum energy design. Each iteration of the
outer process comprises the three main steps defined above.

2.2.1 Embodied energy minimisation

The embodied energy of the structure is minimised by com-
puting optimal internal load paths and the corresponding

Active design Passive design

Fig. 2 Embodied, operational and whole-life energy as a function of the
Material Utilisation factor
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material distribution. Stress constraints (ULS) are accounted
for but geometric compatibility between element deforma-
tions and nodal displacements as well as SLS are ignored at
this stage thus obtaining a lower bound in terms of material
mass. This means that in case of power outage or actuation
system failure and concurrent occurrence of a strong event, the
structure might not be serviceable but load carrying capacity is
not compromised (i.e. fail-safe). In other words, the structure
is designed not to collapse under the worst load case even
without the contribution of the active system.

This constraint could be relaxed. However, civil structures
are often subjected to loads that although have a very low
probability of occurrence, might be extremely damaging and
therefore a fail-safe criterion for the adaptive system is often
regarded as necessary in this context (Schneider and
Vrouwenvelder 2017). Further consideration on fail-safe
criteria for adaptive structures is given in section 7.1.

2.2.2 Actuator layout optimisation

When external loads act on the structure, the compatible forces
will in general be different from the optimal forces and the
resulting displacements might be beyond serviceability limits.
For this reason, the second step is to design the actuation system.
The actuator layout optimisation is carried out by relaxing the
binary problem into a continuous linear form through sensitivity
analysis (see section 4). An optimal location of the actuators
must be determined to manipulate actively the flow of internal
forces by changing the shape of the structure. In this way, the
stress is homogenised and the displacements are reduced within
required serviceability limits.

Although the embodied energy optimisation and the actuator
layout optimisation are decoupled, the actuation system is an
integral part of the structure. This is because the actuators, by
changing the shape of the structure tomeet serviceability require-
ments, allow it to be much leaner, with lower embodied energy.
Conversely, the actuator optimal layout is very much dependent
on the structure within which the actuators are to be fitted. The
efficacy of an actuator to control internal forces and displace-
ments depends on its location and the position of the nodes to
be controlled. When varying the MUT, the resulting material
distribution changes thus requiring a different load-path

redirection and displacement compensation. For this reason, the
actuator optimal layout changes for different values of the MUT.

2.2.3 Operational energy computation

The computation of the operational energy requires assuming
some statistics on the frequency of occurrence of the loads. It is
intuitively clear that the proposed design process will be partic-
ularly beneficial when the design is governed by large loading
events that have a small probability of occurrence (storms, earth-
quakes, unusual crowds). For simplicity, these loads will be con-
sidered as live loads here because they are not permanent. To
illustrate this, Fig. 3a shows a notional cumulative frequency of
occurrence plot for a generic stochastic load.

The first step in the operational energy computation is to
detect the Load Activation Threshold which is represented by
a dotted line in Fig. 3a. The activation threshold demarcates
two zones: on the left-hand side are the more probable low
levels of load the structure will be able to withstand passively
without actuation. On the right are the rarer loads with higher
magnitude which the structure will only be able to resist using
both passive and active load-bearing capacity. The two load-
ing zones can also be visualised in Fig. 3b which shows the
hours of occurrence of the live load whose distribution is
divided in discrete steps from zero to the design load. The
hours of occurrence of the loads above the activation threshold
are represented by the bars in magenta colour. For all levels of
loads above the activation threshold the load path is redirected
and displacements are controlled by the active system via a
shape change. The operational energy that it takes to perform
force redirection and displacement compensation is computed
thereafter. Because the actuation system is only activated
when the loads reach the activation threshold, the operational
energy is only consumedwhen necessary. The objective of the
synthesis is to carefully replace passive resistance through
material and form by a small amount of operational energy.

2.3 Illustrative example

In this paper, the design process is illustrated on a generic roof
supporting structure described here. The structure is made of
planar trusses supporting 10 m of cover each (out of plane) as
shown in Fig. 4a. The trusses are simply supported. The

(a) (b)

Fig. 3 a Live load Cumulative
Distribution Function (CDF); b
live load hours
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simplicity of the case study chosen here is deliberate to illustrate
effectively all the steps of the design process through a useful
visual aid. However, this method has been successfully applied
to other realistic spatial configurations of complex layout
(Senatore et al. 2018a, b) and it has been successfully tested on
a large-scale prototype adaptive structure (Senatore et al. 2018c).

It is assumed that the lateral stability of the roof system is
provided separately (e.g. by some cross-bracing between
trusses) and that the roof cover or the cross-bracing provide
sufficient restraint against out-of-plane instability. Figure 4b
shows one of the interior trusses, constrained as indicated in
the diagram and subject to both permanent and live loads. All
elements are assumed to have a cylindrical hollow section and
to bemade of structural steel (S355) with a density of 7800 kg/
m3 and an energy intensity of 35MJ/kg. To limit the complex-
ity of the optimisation process, the wall thickness is set to 10%
of the external diameter. The four load combinations consid-
ered are listed in Table 1.

The dead load on the roof panels is set to 3 kN/m2 resulting in
a uniformly distributed load of 30 kN/m. There are two types of
live load: a wind suction load modelled as a negative pressure
on the roof panels (L1) and a lateral load L2. The load figures
given in Table 1 are characteristic values typically used in the
design of roof structures by practicing design engineers. For the

purposes of this illustrative example the definition of “charac-
teristic value” is the 95th percentile of the load probability dis-
tribution. Section 5.1 gives details of the load probability distri-
bution in relation to the computation of the operational energy.

3 Embodied energy optimisation

The first stage of the design process consists in finding the
member cross-section areas α that minimise the embodied
energy of the structure and the set of internal forces Fjd (Eq.
5) that satisfy equilibrium constraints (Eq. 6) as well as a set of
ULS inequality constraints (Eq. 7) when the structure is sub-
jected to the design load Pjd . The subscript “j” refers to one of
the “p” load cases whereas “d” refers to the bin of the load
probability distribution corresponding to the design load.

min
α;F

∑
n

i
αi Li ρi eei

s:t:

ð5Þ

BRED � Fjd − PRED
jd ¼ 0 ð6Þ

aÞ Fjd

α
≤MUTσT ; bÞ Fjd

α
≤ min MUTσC;σB� � ð7Þ

fully passiveð Þ 0 < MUT ≤1 fully activeð Þ: ð8Þ

In Eq. 5, αi is the cross-section area, Li the length, ρi the
density and eei the material intensity factor for the ith element
in the structure, which is made of n elements. Following the
Simultaneous Analysis and Design approach (SAND) (Haftka
1985), the n × 1 dimension vectors α and Fjd, gathering the

(a) 

L1 

Dead load 

(b) 

L2 

Fig. 4 a Roof structure, perspective view; b simply supported truss beam, dimensions and loads

Table 1 Roof structure-load combination cases

Load factor Permanent load Load factor Live load

LC1 1.35 dead load + self 1.5 n/a

LC2 0.9 dead load + self 1.5 L1 = 3 kN/m2

LC3 1.35 dead load + self 1.5 L2 = 3 kN/m2

LC4 0.9 dead load + self 1.5 L3 = L1 + L2
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member cross-section areas and forces respectively, are the de-

sign variables. Pjd
RED

[(m − nR) × 1] is the design load reduced to
the m − nR unconstrained degrees of freedom (DOFs), where m
is the number of DOFs and nR the number of constrained DOFs.

Equation 6 expresses equilibrium constraints where B
RED

[(m − nR) × n] is the direction cosine matrix reduced to the
unconstrained DOFs which is constant because the topology
is assigned a-priori and only small-displacements are consid-
ered. However, this equality constraint is nonlinear because
the self-weight of the structure changes iteratively (due to
changes in α) hence so does the vector of external loads

PRED
jd which is the sum of live and permanent load.
Ultimate limit states are expressed by linear inequalities

in Eq. 7 where σT and σC are material yield stress in tension
and compression respectively which are factored by the
MUT. At this stage, the MUT is constant between 0 and
100% (absolute minimum mass/embodied energy struc-
tures). Stability constraints are included in Eq. 7 where crit-
ical loads σB are computed iteratively using the Euler buck-
ling formulation. Eq. 7 checks the design stress against the
minimum between the crushing load and the buckling load.
Although global stability is an important aspect in the design
of slender structures (Kocvara 2002; Torii et al. 2015), it is
not considered here, to limit the complexity of the
formulation.

At this stage, neither geometric compatibility nor deflec-
tion constrains are included hence the internal force vector
Fjd is called optimal or non-compatible. Compatibility will
be enforced by the corrective actions of the actuators which

redirect the compatible load-path Fjd
COMP to the optimal

one Fjd and at the same time change the shape of the struc-
ture to keep displacements within required serviceability
limits. This initial phase of the methodology is inspired from
Teuffel (Teuffel 2004) but unlike Teuffel, self-weight and
local buckling constraints are considered, making the prob-
lem nonlinear.

To ensure that the cross-section areas sought and load-
paths are optimum and adequate for multiple load cases, the
problem requires a vector formulation. This is also useful to
integrate the optimisation with the statistics of load occurrence
later 5.1. Using the vector formulation, the problem stated in
Eq. 5–8 is rewritten as:

min
α;F

∑
n

i
αiLiρieei

s:t:

A
EQ�x−Pd ¼ 0

AULS � x≤0
AULSb � x≤0

8>>>>>>><
>>>>>>>:

ð9Þ

where the design variable vector x concatenates the cross-section
area vectorα and the optimal force vector Fd

EXT for all load cases.

Fd
EXT extends the internal force vector Fd to include the support

reactions. AEQ AULS and AULSb are block matrices which collate
force-equilibrium balance, linear inequalities constraints (ULS)
and non-linear stability inequality constraints (ULSb) for all load
cases respectively. The main reason for a distinction between the
ultimate limit state constraints AULS and AULSb is that the latter
requires updating every iteration due to the change of the cross-
section areas. However, ULS constraint equations do not double
because the minimum between the admissible stress in compres-
sion and the critical load is selected. The reader is referred to
appendix A.1 for a comprehensive description of the vector for-
mulation and A.2 for a discussion on the existence and type of
solutions to the problem stated in Eq. 9.

The truss is made of 26 (n) elements. There are 24 (m) DOFs
of which 3 (nR) are constrained. Because there are 4 load cases,
the number of design variables is 142 and that of constraints is
200 (Eq. 45). The problem is over-constrained (Eq. 46) hence
members are utilised at capacity (i.e. ultimate limit state con-
straints are satisfied by equality) only for the worst load case
(LC4). The problem was solved numerically using Sequential
Quadratic Programming in Matlab. By the nature of the SQP
method, sensitivities are computed numerically (Fletcher 1995).
The hessian of the Lagrangian function is a positive definite
quasi-Newton approximation which is calculated using
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
(Nocedal andWright 2006). It takes 18 iterations to achieve con-
vergence within an average time of 1500 ms using a 64-bit Intel
i7 4-core processor. No parallelisation has been implemented.

The solution to Eq. 9 for the case study defined in 2.3 is
shown in Fig. 5. This cross-section distribution is achieved
using an MUT set to 100%. The bar chart of the cross-
section areas is shown in Fig. 6. This section distribution gives
a good indication of a more efficient layout for this problem.
Some of the very thin elements (6,9,10,12,15) could be taken
out since their contribution is negligible. Note that removing
those elements makes the layout statically determinate without
increasing the critical buckling length of any other member.

4 Actuator layout optimisation

The determination of the actuator layout requires a certain
number of degrees of freedom nCDOFs to be controlled which
is usually chosen based on the response of the structure and
serviceability requirements. The minimum number of actua-
tors nACTs to control the required displacements exactly, is
equal to the sum of nCDOFs and the static indeterminacy r:

nACTs¼ r þ nCDOFs: ð10Þ

Intuitively this is the number of actuators needed to turn the
structure into a controlled mechanism. In fact, one actuator
can control at least one degree of freedom and for statically
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indeterminate structures, r (dimension of the self-stress space)
extra actuators are needed to control the internal forces and
enforce geometric compatibility. In case fewer actuators are
fitted into the structure, displacements can still be compensat-
ed albeit only approximately.

In this nested approach, the most efficient actuator posi-
tions are those where the active elements have the largest
effect towards internal load-path and displacement compensa-
tion. The problem is of combinatorial nature as it involves
selecting nACTs actuators from a set of n available sites (i.e.
the elements). A computation of all possible combinations is
impractical even for the simple layout under consideration
since it involves as many structural analyses as:

n!
nACTs! n−nACTsð Þ! ¼ 7 726 160; ð11Þ

where n is the total number of elements and nACTs = 5 + 5 = 10.
Instead, this problem is formulated here as a constrained least-
square optimisation. The formulation of the actuator placement
problem requires two prior steps: (1) computation of required
load-path redirection and displacement compensation, (2) as-
sessment of force and displacement actuation sensitivity.

4.1 Force redirection and displacement compensation

The forces Fd
COMP are the compatible internal forces which

could be computed by a standard stiffness matrix analysis of

the problem. Fd
COMP are in equilibrium with the external loads

without the corrective action of the actuators. The difference
between compatible and optimal forces denoted ΔFd is:

ΔFd ¼ Fd−Fd
COMP

: ð12Þ

Fig. 6 Cross-section areas, optimised structure MUT= 100%

Fig. 5 a Optimised structure MUT= 100%; b element numbers. Scale 1:150

355 N/mm2 -355 N/mm2 

355 N/mm2 -355 N/mm2 

355 N/mm2 -355 N/mm2 

Fig. 7 Optimal forces F4d,
compatible forces F4d

COMP and
force redirection ΔF4d under LC4
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To satisfy compatibility, this force difference must be com-
pensated by the actuator length changes. To appreciate the
effect of the load path redirection, Fig. 7 shows the optimal
and compatible forces and their difference under LC4 plotted
on each corresponding member of the structure. Focussing on
elements 1, 9 and 12 for example, work is needed to decrease
the compatible tension state via compressive forces.

The compatible displacements ud
COMP are those resulting from

the action of the external loads without actuation. For example,
Fig. 8a shows the truss deflection caused by the live load LC4.

The vertical displacement of the nodes 2 to 5 is beyond
serviceability limits (span/360 = 56 mm). For this reason,
the vertical degrees of freedom of those nodes are chosen to
be controlled (CDOFs). The horizontal degree of freedom
of node 12 is also controlled to limit the horizontal move-
ment of the support. The controlled nodes are indicated by
circles in Fig. 8b. Imposing serviceability limits on the
CDOFs generates a vector of required displacements uSLSd
and consequently a displacement compensation vector:

Δud ¼ ud
SLS−ud

COMP
: ð13Þ

where Δud is a vector whose elements are different from zero
only if the displacement of the corresponding CDOF is be-
yond serviceability. As for the force compensation ΔFd, Δud is
part of the corrective action of the actuators. Similar consid-
erations apply for the other load cases.ΔFd and Δud, are inputs
to determine the optimal actuator layout.

4.2 Computation of force and displacement sensitivity
matrices

The assessment of the structure actuation sensitivity is based
on the computation of the force SF and displacement Su sen-
sitivity matrices. These matrices store element forces and nod-
al displacements caused by a unitary length change for each
element of the structure in turn. At this stage all elements are
considered as actuator candidates. For illustration purposes,
Fig. 9 shows the forces and displacements caused by a unit
length change in element 8.

A convenient method to compute internal forces and displace-
ments resulting from element length changes is the Integrated
Force Method (IFM) (Patnaik 1973). In this section, the IFM
main equations are briefly introduced to explain how to obtain
the actuation sensitivity matrices. The use of the IFM to compute
the effect of an element length change is described comprehen-
sively in appendix A.3.

In statically indeterminate structures, internal stresses can
be caused by geometrical imperfections (e.g. lack of fit or
thermal strains) in the elements. The IFM allows an initial
deformation (e.g. lack of fit) to be dealt with in a compact
way and without the need to choose any specific member as
redundant. In the design method presented in this paper, a
deformation vector akin to a lack of fit is defined to assign
the actuator length changes. In other words, the length change
of an actuator is thought of as a non-elastic strain which is
usually produced by thermal, plastic, creep strain or lack of fit

(b) 

98 mm 

160 mm 

98 mm 

160 mm 

25 mm

(a) 

Fig. 8 a LC4 compatible displacements (× 10 mag.); b controlled degrees of freedom (CDOFs)

-0.92 kN 0.89 kN

(a)

(b) 

Fig. 9 a Displacements (× 300 mag.), b forces caused by element 8 unitary length change
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and is referred here as eigenstrain (Ziegler 2005) (see A.3).
The governing equation of the IFM is:

BRED

C � G
� �

� F ¼ PRED

PEIG

� �
; ð14Þ

where BRED [(m − nR) × n] and PRED [(m − nR) × 1] are the equi-
librium matrix and external load vector reduced to the uncon-
strained degrees of freedom; C(r × n) is a compatibility matrix
whose rows are the self-stress vectors defining the null-space
of BRED (see appendix A.3); G (n × n) is the local flexibility
matrix (diagonal) relating the element deformation to the in-
ternal forces. Because Eq. 14 combines equilibrium and com-
patibility into a single matrix statement, the external load PRED

must be complemented by an (r × 1) vector which in this work

is defined as the eigenstrain load vector PEIG:

PEIG ¼ −C � β0∘L
� �

; ð15Þ
where β0(n × 1) is the assigned eigenstrain, L(n × 1) is the
element length vector and ° is the entry-wise product
(Hadamard product). This way, the eigenstrain load vector
offers a mean to set directly an eigenstrain distribution i.e.
the actuator length changes ΔL(n × 1) defined as:

ΔL ¼ β0∘L: ð16Þ

Solving for forces Eq. 14, the column vector S F
i of the

force sensitivity matrix collating the element forces caused
by a unit length change of the ith element is:

S F
i ¼ BRED

C � G
� �−1

� 0
~PEIG

� �
; ð17Þ

where the external load is set to a zero vector to compute only
the internal forces caused by element length changes and the
~PEIG is obtained by setting the ith component of the eigenstrain
vector β0 to 1/L but all other components to zero:

~PEIG ¼−C � ~β
0
∘L

� 	
; ~β

0
¼ β0

1 ¼ 0…β0
i ¼ 1=L…β0

n ¼ 0

 �

: ð18Þ

Iterating for each element the force sensitivity
matrix SF(n × n) is formed. The rank of SF(n × n) is gener-
ally equal to the indeterminacy r because its columns are
linear combinations of r independent self-stress vectors.
Note that for the ith element to achieve an effective unitary
length change it must be treated as infinitely rigid by set-
ting its flexibility to zero (G(i,i) = 0). However, in practice,
an actuator can achieve the required length change via
feedback control. For statically determinate structures
there is no difference between optimal and compatible
forces hence the matrix C is a 0 matrix, and so is the

eigenstrain load vector ~PEIG. This means that no stress is
caused by the actuator length changes i.e. SF is a 0 matrix.

The column vector Su
i collating the nodal displacements

caused by a unit length change in the ith element is obtained by:

Su
i ¼ J � G � S F

i þ ~β0∘L
� 


; ð19Þ

where J is the deformation coefficient matrix defined in appen-
dix A.3. Iterating for each element the displacement sensitivity
matrix Su(m × n) is formed. The rank of Su(m × n) is generally
equal to (m − nR) which means there are as many independent
degrees of freedom as those contained in the equilibriummatrix
BRED minus those constrained at the supports.

4.3 Optimal actuator layout

To find the optimal actuator layout, the efficacy of each element
to redirect the load-path and to correct displacements must be
assessed. The problem is formulated as a constrained
minimisation:

min
ΔL

S u � ΔLALL
d −Δud

�� ��2
s:t:

S F � ΔLALL
d ¼ ΔFd

8<
: ð20Þ

The objective function to minimise in Eq. 20 is the squared
norm of the difference between the nodal displacements

caused by the element length changes ΔLd
ALL (the unknown

variable vector) and the required displacement correction.
The equality constraints in Eq. 20 enforce compatibility - the
actuator length changes must redirect the compatible load-
path to the optimal one. Eq. 20 is a constrained least square
problem which can be solved in several ways (Björck 1996).
A method based on generalised singular value decomposition
(Van Loan 1985) was used as this produces a minimum norm
solution even when the constraint matrix is rank deficient.
Considering the case study defined in 2.3, the problem in
Eq. 20 is solved within 3 ms on average using a 64-bit Intel
i7 4-core processor.

Because the actuator positions are still unknown, ΔLd
ALL is

here computed considering all elements working as actuators
(hence the superscript “ALL”). This will be used to evaluate the
efficacy of each element to work as an actuator thus leading to
the optimal actuator layout (4.3.1 and 4.3.2). Once the actuator
layout is known, the actuator length changes will be computed
solving an identical optimisation problem to that given in Eq.
20 but using the reduced force and displacements sensitivity
matrices as described in 5.2. This way the actuator placement
problem and control of forces and displacements are decoupled
avoiding a mixed discrete-continuous formulation.

Note that for statically determinate structures, there is no need
to redirect the load-path to enforce compatibility (4.2) and there-
fore the actuator length changes can be obtained directly using
the pseudo-inverse of the displacement sensitivity matrix:
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ΔLd
ALL¼ Suð Þþ � Δud: ð21Þ

The problem stated in Eq. 20 or Eq. 21 can be solved
exactly if the rank of Su is equal to (m − nR) and the rank
of SF is equal to the degree of static indeterminacy r i.e.
the number of independent equations equals the number
of unknown variables n. Due to numerical issues the sen-
sitivity matrices may not have the required rank. In this
case, there can be large residuals resulting in a wrong
actuator efficacy evaluation. The method given in 4.2
based on eigenstrain assignment and the IFM produces
force and displacement sensitivity matrices with correct
ranks.

4.3.1 Partial actuator efficacy for control of displacements

For stiffness-governed problems, displacement compensation
is dominant compared to force compensation therefore the
actuator efficacy is given by how effectively their length
changes compensate for displacements:

eff uij ¼
∑ SujCDOFs � fΔLALL

jd

� 	
∘

1

ΔuCDOFsjd

 !

nCDOFs
: ð22Þ

The efficacy is called “partial” because it is evaluated for a
single load case. The matrix Su∣CDOFs(nCDOFs × n) is obtained by
extracting from Su the rows corresponding to the controlled
degrees of freedom with nCDOFs being their total number.

Similarly, the vector Δujd
CDOFs nCDOFs�1Þ�

is obtained by
extracting from Δujd the components corresponding to the con-

trolled degrees of freedom. The vector fΔLjd
ALL

n� 1ð Þ is obtained
by extracting the block corresponding to the jth load case from

ΔLd
ALL n � npð Þ � 1½ � and setting all its components to zero except

that corresponding to the length change of the ith element. The

(nCDOFs × 1) vector SujCDOFs�fΔLjd
ALL

contains the controlled

node displacements caused by the unitary length change of

the ith element. Dividing it component-wise by Δujd
CDOFs evalu-

ates the contribution of the ith element length change towards
the required displacement correction of each controlled node.
This result in a vector the sum of whose elements is divided by
nCDOFs to give the actuator partial efficacy for the ith element.
The actuator partial efficacy is constrained to be (1) non-
negative and (2) smaller than unity:

0≤eff ij
u≤1: ð23Þ

If the efficacy is outside this range, it is set to 0. The 1st

condition is to exclude those elements whose length changes
cause a deflection which moves the controlled nodes in the
opposite direction to that required. The 2nd condition is to

exclude those elements whose length changes cause a deflec-
tion overshooting the required displacement correction.
Collating the result for each element and for all the load cases
gives the vector of partial efficacy eff u(n × np).

4.3.2 Partial actuator efficacy for control of internal forces

For strength-governed problems Δud will in general be negligi-
ble hence displacement correction should not be needed.
However, actuator work might still be needed in case ultimate
limit states are exceeded. In this case, the actuator length chang-
es ΔLd must only redirect the load-path without changing
the displacements of the controlled nodes (i.e. Δud ≅ 0 even
after the actuator change their length). The optimal actua-
tor positions are those where their length change is most
effective to achieve the required load-path redirection ΔFd:

ef f F
ij ¼

sF ⋅fΔL
ALL

jd

� 	
°

1

Δujd

� 	
n

: ð24Þ

Similar to 4.3.1, the (n × 1) vector S F ⋅fΔLjd
ALL is the change in

the element axial forces caused by the length change of the ith

element. Dividing it element-wise by ΔFjd evaluates the contri-
bution of the ith element towards the required load-path redirec-
tion. This result in a vector the sum of whose components
is divided by the number of elements n to give the actu-
ator partial efficacy for the ith element. The actuator par-
tial efficacy is constrained to be (1) non-negative and (2)
smaller than unity:

0≤eff Fij ≤1: ð25Þ

If the efficacy is outside this range is set to 0. The 1st
condition is to exclude those elements whose length changes
cause force variation opposite to that required (e.g. increase in
tension is required but compressive forces are provided). The
2nd condition is to exclude those elements whose length
changes cause force variation bigger than that required.
Collating the result for each element and for all the load cases
gives the vector of partial efficacy eff F(n × np).

4.3.3 Global actuator efficacy

Depending on whether the problem is stiffness or strength
governed the global efficacy is obtained summing the partial
efficacy over all load cases:

Eff u ¼ ∑p
1 eff uj
np

: ð26Þ

Eff F ¼ ∑p
1 eff Fj
np

: ð27Þ

Senatore et al.



The actuator layout is obtained by selecting the indi-
ces of those elements corresponding to the nACTs highest
components in the global efficacy vector. Note that for
statically determinate structures, partial and global actu-
ator efficiency must be obtained using Eq. 22 and Eq. 26
respectively because internal forces are not changed by
the actuator length changes.

Figure 10 shows the optimal actuator layout for displace-
ment control. The nACTs = 10 actuators are integrated in the
structure and mapped on the initial geometry respectively
obtained using the global actuator efficacy for displace-
ment control. Similarly, Fig. 11 show the optimal actuator
layout obtained using the global actuator efficacy for force
control. Generally, for indeterminate structures there is
enough redundancy so that the load-path can be redirected
by either actuator optimal layouts. However, when shape
control is dominant, the actuator layout for displacement
control must be used to achieve both displacement and
load-path control.

4.4 Actuation system embodied energy

Once the actuator layout is known, the embodied energy
of each actuator is added to the structure embodied ener-
gy. The actuator embodied energy increases as the actu-
ator force capacity increases. For simplicity, it is assumed
that an actuator is entirely made of steel with an energy
intensity of 35 MJ/kg (Hammond and Jones 2008) and its
mass is a linear function of the force capacity with a
proportional constant of 0.1 kg/kN (e.g. an actuator with
a push/pull load of 1000 tons weighs 1000 kg)
(ENERPAC 2016).

5 Operational energy computation

The operational energy is defined here as the energy needed to
operate the actuators to redirect the load-path and compensate
for displacements when needed. Assuming a statistical
distribution of the load occurrence, computing the opera-
tional energy involves first detecting the load threshold
from which compensation of forces and displacements is
needed. Then, calculating the actuator length changes to
achieve the required control objectives and finally com-
puting the work done by all the actuators throughout the
service life of the structure.

5.1 Live load probability distribution and load
activation threshold

To work out the load activation threshold, some assump-
tions about the statistics of the occurrence of the live load
must be made. As noted in the introduction, one expects
adaptive structures to be particularly advantageous in
terms of total energy when the design is governed by large
and rare loads such as storms, earthquakes, snow, and un-
usual crowds. Probabilistic models already exist for most
of these loads. For instance, earthquakes are often
modelled with a Poisson distribution and wind storms with
a Weibull distribution (Flori and Delpech 2010). Should
this methodology be applied in a practical case, the rele-
vant load probability distribution should be used. For the
purpose of describing the design methodology in this pa-
per, it is more convenient to work with a generic distribu-
tion which can easily be parametrised. The effect of the
assumptions made here about the probability distribution
are tested systematically in (Senatore et al. 2018b) and via

Fig. 10 Optimal actuator layout for displacement control, MUT= 100%

Fig. 11 Actuator optimal layout for force control, MUT= 100%
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experimental testing on a large-scale adaptive structure
prototype (Senatore et al. 2018c). A normal distribution
is often used to model natural random processes.
However, it is symmetric around the mean so does not
provide the right bias towards the lower values of the ran-
dom variable. A log-normal distribution is closely related
to the normal distribution because it is a probability distri-
bution whose logarithm has a normal distribution and it
takes only positive real numbers. Therefore, the log-
normal distribution is both general and simple so it will
be used in the following to model the live load. For a given
load case j (0 < j ≤ np) the possible values of the load rang-
ing from 0 to the design value to Pjd are groups into n

d bins
and these bins are denoted Pjk (0 ≤ k ≤ nd). The probability
that a load occurrence Pj falls within a bin Pjk, is pjk:

pjk ¼ PPDF P j∈Pjkjμ;σ
� � ¼ 1

P jσ
ffiffiffiffiffiffi
2π

p exp
− ln P j

� �
−μ

� �2
2σ2

 !
; ð28Þ

where PPDF is the probability density function; μ and σ the ex-
pected value and the standard deviation of the underlying normal
distribution. For simplicity, the mean of the underlying normal
distribution is set to zero. Following the limit-state design meth-
odology, the design load Pjd is set as the characteristic value
(excluding safety factors) of the load probability distribution cor-
responding to the 95th percentile (Nowak and Collins 2012).
Once the mean and the characteristic load are set, the standard
deviation is adjusted so that the design load corresponds to the
95th percentile. Assuming a 50-year service life indicated by
tservice (expressed in hours), the number of hours when the load
falls within the bin Pjk is obtained as:

Hjk ¼ tservicepjk : ð29Þ

The level of load causing the element stress to exceed ULS
and/or nodal displacement to exceed SLS is defined as the

load activation threshold P**
j . For any load of higher magni-

tude than the load activation threshold the active system must
redirect the load-path ΔFk and control the shape of the struc-
ture Δuk. Considering the case study defined in 2.3, the lowest
load activation threshold was found at a value of 1.45 kN/m2

for LC4 corresponding to an equivalent wind velocity of
45 m/s (category 2 hurricane of the Saffir-Simpson scale).

5.2 Load path redirection and shape control

To obtain the force difference vector (i.e. load path redirection)

ΔFjk ¼ Fjk−FCOMP
jk

� 

, the optimal force vector Fjk for all the

occurrences of the live load Pjk above the activation threshold
P**

j must be found first. The problem is similar to that described

in Eq. 9 but in this case, the only unknown variables are the

optimal forces Fk
EXT (including support reactions) obtained from

solving the optimisation problem:

min
FEXT

FEXT
k

�� ��2
s:t:

AEQ � FEXT
k −Pk¼0

AULS � FEXT
k −α≤0

AULSB � FEXT
k −α≤0

8>>>>>>>>>><
>>>>>>>>>>:

ð30Þ

where AEQ, AULSand AULSb are constraint matrices identical to
those defined in Eq. 37, Eq. 40 and Eq. 43. However, in this
case, the first column is removed because the design variable

vector (in this case, Fk
EXT) no longer contains the cross-section

areas α. Fk is obtained from Fk
EXT by removing the support

reactions. If a statically determinate layout is chosen, the actu-
ator length changes only affect the displacements but not the
state of stress in the structure (small displacements assumption)
hence Fk is obtained directly from equilibrium. The problem
formulated in Eq. 30 was solved as was done to solve the
problem formulated in Eq. 9. Considering the case study de-
fined in 2.3, each Fkwas obtained approximately in 3 iterations
within 50 ms on average.

Once the optimal force vector is found, the actuator length
change ΔLjk needed to redirect the load-path (ΔFjk) and com-

pensate for displacements Δujk ¼ ujk
SLS−ujk

COMPÞ�
is computed

using Eq. 31:

min
ΔLk

SujRED⋅ΔLRED
k −ΔuREDk

�� ��2
s:t:

SujRED⋅ΔLRED
k ¼ ΔFk

8>><
>>: ð31Þ

and for statically determinate structures (see 4.2):

ΔLRED
k ¼ SujRED

� 
þ
� ΔuREDk : ð32Þ

In these equations the sensitivity matrices S u (m × n) and
SF (n × n) are reduced (hence the superscript RED) by extracting
the nACTs columns corresponding to the actuator indices. In ad-
dition, Su and Δukmust be further reduced by extracting the rows
corresponding to the controlled degrees of freedom. This way the
rank of the reduced matrices Su ∣ RED (nCDOFs × nACTs) and
SF∣RED (n × nACTs) is in general equal to nCDOFs and r respectively
and their sum is nACTs which is the size of the vector of the

unknown variables ΔLjk
RED nACTs � 1ð Þ. In this case, the problem

can be solved exactly. However, there might be cases where the
reduced sensitivity matrices do not have the required rank. In
these cases, adding more actuators improves control accuracy.

ΔLjk
RED is obtained from ΔLjk(n × 1) reduced to the non-zero

components corresponding to the position of the actuators.
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Note that to account for multiple load cases S u∣RED and
SF∣RED are reshaped into block matrices of dimensions
[(nCDOFs · np) × (nACTs · np)] and [(n · np) × (nACTs · np)] respective-
ly. Consequently ΔLk

RED becomes a block vector of dimensions
[(nACTs · np) × 1]. The least square constrained problem stated in
Eq. 31 was solved in a similar way to the problem stated in Eq.
20 taking 2 ms on average to produce a solution.

The actuator length changes depend on the target shape
defined by required displacements uSLS (defined in 4.1) which

can be chosen in several ways. Figure 12 illustrates this.
Figure 12a shows the undeformed shape under LC4 for design
load P4d. Figure 12b shows the controlled shape obtained
setting the displacements of all controlled nodes (indicated
in Fig. 8) equal to the serviceability limit (span/360).
However, this tends to create drastic curvature changes be-
tween consecutive bays. A better way is to consider the rate
of change of the curvature between consecutive bays to avoid
the formation of kinks as shown in Fig. 12c.

Fig. 13 Actuator length changes for all load cases

(a) 

(c) 

33 mm 
55 mm 55 mm 

33 mm 8 mm 

55 mm 55 mm 55 mm 55 mm 

(b) 

8 mm 

Fig. 12 a Undeformed, b controlled shape no curvature constraints, c controlled shape with curvature constraints. × 10 Mag. under LC4. Scale 1:150

73 mm 116 mm 116 mm 73 mm 

(b) 

18 mm

(a) 

L1 

Fig. 14 a Controlled and b uncontrolled deformed shapes under LC1. × 10 Mag., MUT = 76%. Scale 1:150
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Figure 13 shows the bar chart of the actuator length changes
for all load cases. Note that even when displacement compen-
sation is substantial (e.g. 160 mm for the central nodes of the
top/bottom chords under LC1 as shown in Fig. 8) the maximum
actuator length change is small (below 15 mm).

To make a conservative comparison with the passive struc-
ture (see section 6.2), deflections are only considered under live
load for both adaptive and passive structures. Under permanent
load (LC1), the passive structure is thought of as perfectly pre-
cambered whilst for the adaptive structure the actuators reduce
the displacements completely thus achieving an apparent infi-
nite stiffness. Figure 14a shows the controlled shape under LC1
whilst Fig. 14b shows the deformed shape without using actu-
ation. In the controlled case, the top chord is kept flat whilst the
central part of the bottom chord bows downward thereby locally
increasing the second moment of area of the truss beam.

Because the structure takes the live load already stressed due
to the initial shape change under permanent load, the compat-
ible forces for the other load cases result from the superposition
of the optimal forces under permanent load FPL and the com-
patible forces under live load only F COMP L

jd . Considering LC4

for example, this means that F4d
COMP¼ FPL þ FCOMP L

4d .

5.3 Actuator work and operational energy

Figure 15 shows the workWijk done by the i
th actuator for the kth

occurrence of the jth load case Pjk above P**
j . This work is rep-

resented by the hatched area; Fijk
COMP is the compatible force with

no active control (the actuator is locked in position) and ΔFijk is
the force needed to change length ΔLijk. From this, it is clear that:

Wijk ¼ FCOMP
ijk þ 1

�
2ΔFijk

� 

ΔLijk : ð33Þ

Because length corrections are usually small, a linear elas-
tic force-displacement relationship is assumed for simplicity.
The force FCOMP

ijk is considered as a constant force because it is

part of the total force exerted by the actuator whether it acts as

an active or a passive element. The work related to this con-
stant force is shown as the rectangular area in Fig. 15. Instead,
the work related to the force correction ΔFijk is given by the
half product with the corresponding ΔLijk.

To compute the operational energy, further assumptions are
needed regarding the working frequency and mechanical effi-
ciency of the actuators. It is assumed that the actuators always
work at the first natural frequency of the structure which is
likely to dominate the response of most structures excited by
dynamic loads relevant to civil engineering structures. This
assumption is conservative because it implies that even if the
loads only vary very slowly in time, the actuators work at the
1st natural frequency of the structure. This is to obtain an
upper bound of the operational energy consumption during
service. In addition, it is assumed that non-active means are
used to control vibrations (e.g. tuned mass dampers) if re-
quired. This is the case when vibration is caused by loads
below the activation threshold (ULS and SLS respected).
Whilst the active system could be used to compensate this
effect, it may come at the expense of a significant additional
operational energy since vibrations can occur very often.

Regarding the actuator mechanical efficiency, it is assumed
that linear actuators are used with an efficiency of 80%.
Assuming hydraulic actuators, mechanical efficiency is in a
range 90–98% (Huber et al. 1997). The total operational en-
ergy (OpE) for the kth occurrence of the load probability dis-
tribution can be finally computed as:

OpEk ¼ ∑
p

j
∑

nACTS

i

FCOMP
ijk þ 1

�
2ΔFijk

� 

ΔLijkωHjk

η
;Pjk ≥P**

jk ; ð34Þ

whereω and η are the working frequency expressed in cycles per
hours and mechanical efficiency of the actuators respectively.

Note that the energy it takes to power the control system
(e.g. sensors and signal processing) is modelled here as a
linear function of the number of structural elements and actu-
ators. This assumption is based on empirical knowledge
gained via experimental testing on a purpose-built large-scale
adaptive truss prototype instrumented with strain gauge based
sensors and fitted with mechanical linear actuators (Senatore
et al. 2018c). This fixed term is part of the total operational
energy but it is usually substantially lower than the energy
needed by the actuators to redirect internal forces and/or to
control displacements. Assuming a value of 200 W to power
the control system and a total time of activation of 2.5 years
(5% of the total life of the structure, which is usually the
average time predicted by the simulations), the energy con-
sumption to power the control system totals about 16 GJ
which converts to 440 kg of steel (Hammond and Jones
2008). This term can be practically neglected for most cases
except for very small structures for which the mass savings
become comparable with the loss of energy due to the control
system power requirement.

1
2

F 

Fig. 15 Actuator work
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6 Total energy optimisation (TEO)

6.1 Energy savings vs MUT

The whole-life (i.e. total) energy is optimised by minimising the
sum of the embodied and operational energy. The process de-
scribed in sections 3, 4 and 5 is repeated iteratively within an
outer loop varying the Material Utilisation factor in the range
[fully passive 0 <MUT ≤ 1 fully active]. By decreasing the
MUT the load path optimisation routine (section 3) returns
stiffer structures and therefore a higher load activation threshold,
whereas when the MUT is increased, the converse happens.

Considering the case study defined in section 2.3, Fig. 16a
and b shows the load activation thresholds (dotted lines) for
the adaptive solution designed with MUT = 100% and

MUT = 50% respectively. As expected the load activation
thresholds are higher for the case MUT = 50%. Note that for
the load case LC3 (lateral load), neither force nor displacement
compensation are needed and therefore the activation threshold
line is not needed and it is set to zero for completeness.

A higher load activation threshold results in a lower oper-
ational energy as shown inFig. 17a andbwhich compares the
total energy of the adaptive structure to the embodied energy
of the equivalent passive structure designed using a bespoke
optimisationmethod outlined inAppendixA.4. Thismethod
gives results comparable with those obtained by the
Modified Fully Utilised Design (Patnaik et al. 1998) and
outperforms it when multiple load cases are considered.

Although the embodied energy savings are substantial
(57%) when setting theMUT to 100%, the total energy savings

(a) (b)

Fig. 17 Passive vs adaptive total energy; a MUT= 100%, b MUT= 50%

(a) (b)

Fig. 16 Live load CDF; a MUT= 100%, b MUT= 50%

Table 2 Energy, mass savings and activation threshold vs MUT

Embodied energy (MJ) Operational
energy (MJ)

Mass savings Energy savings Activation
threshold (LC4)

Actuation time (years)

MUT= 100% 0.69∙105 0.72∙105 56.5% 11% 1.0 kN/m2 3

MUT* = 76% 0.83∙105 0.07∙105 47% 43% 1.3 kN/m2 2.1

MUT= 50% 1.23∙105 0.02∙105 22% 21% 2.0 kN/m2 0.8

MUT= 40% (passive) 1.57∙105 0 – – – –
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are much lower (11%) due to a higher level of operational
energy needed for structural adaptation. By contrast when set-
tingMUT= 50% the operational energy decreases substantially
but the total energy savings are low (21%) because of the extra
embodied energy. Note that the embodied energy of the adap-
tive structure includes that of the actuators (see 4.4).

It is clear then that by varying the MUTone can move from
a least-weight structure with small embodied but large opera-
tional energy, to a stiffer structure with large embodied but
smaller operational energy.

6.2 Adaptive vs passive

For the truss example used in this paper, the minimum total
energy configuration is found for anMUTof 76%. This means
that the optimised adaptive structure is designed so that the
maximum stress under the worst load combination is 76% of
the yield stress. Table 2 gives energy savings and load

activation thresholds. Figure 18 compares the adaptive struc-
tures obtained using MUT = 100%, MUT = 50% and the
equivalent passive structure. The passive structure corre-
sponds to MUT = 40%. Although subject to the same loads,
the material distribution differs substantially between the
designs.

Figure 19a shows the curves of the embodied, operational
and total energy as the MUT varies. The operational energy
reduces as the MUT decreases whereas the embodied energy
does the opposite. Figure 19b compares the embodied energy
of the equivalent passive structure and the total energy of the
adaptive structure. For the optimum adaptive structure (MUT =
76%) the energy savings are 43% accounting for the embodied
energy of the actuators (total mass of 255 kg) and 49% without
(see 4.4). Comparing this optimum structure with the adaptive
structure obtained for MUT = 100% shows that a 20% increase
in embodied energy results in a 90% decrease in operational
energy. By contrast, using MUT= 50% the operational energy

(b)(a)
100% 76% 50% 40%

Fig. 19 a Embodied, operational and total energy vs MUT; b passive vs adaptive total energy

MUT=100%, weight = 1.6 ton  

MUT=50%, weight = 3.2 ton 

Passive, weight = 4.4 ton 

MUT=76%, weight = 2.2 ton 

Fig. 18 Comparison adaptive (MUT = 100%, MUT = 76%, MUT = 50%) vs passive structure. Scale 1:150
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is very low whereas the embodied energy is 50% higher that of
the adaptive structure obtained with MUT= 76%.

On average, the passive structure element cross-sections
areas are twice as big as those of the adaptive one as shown
in Fig. 20. The biggest and smallest diameter tubes for the
adaptive solution are 200 mm and 10 mm for element 3 (mid
top chord) and 8 (diagonal) respectively.

Figure 21 compares the stress in the elements of the adaptive
(a) and passive (b) structures. Stress homogenisation achieved
by shape and force control through actuation results in most of
the elements (top chord and diagonals) of the adaptive solution
being utilised at 60% (average) of the capacity for LC1 (per-
manent load) and LC3 (wind). For the passive solution instead
the average element utilisation is 30%. The maximum length
changes are a 20-mm extension and a 7-mm shortening for the
actuator fitted on element 12 (diagonal) under LC1 and LC4
respectively. Under live load (LC3), the highest forces in

tension (489 kN) and compression (522 kN) are applied by
the actuators fitted on element 26 and 7 respectively.

6.3 Design process summary and computation time

Table 3 summarises the main steps of the process providing
computation times for the design of the case study truss defined
in 2.3. The truss is made of 26 (n) elements. There are 24 (m)
DOFs of which 3 (nR) are constrained. The controlled degrees of
freedom are 5 (nCDOFs) and the number of actuators is 10 (nACTs).
The design variables areα (26) + Fd (29 · 4) + Eff u(26) = 168.
The first nACTs components of the vector Eff is the optimal actu-
ator layout hence it is included in the design variables. TheMUT
range (50% to 100%) was sampled in 50 points. Computations
times are obtained running the algorithm on a 64-bit Intel i7 4-
core processor. No parallelisation has been implemented. The
total computational time of the synthesis process of this case

(b)

(a)

Fig. 21 a Element stress adaptive (MUT= 76%); b element stress passive

Fig. 20 Cross-section area, adaptive (MUT= 76%) vs passive

Synthesis of minimum energy adaptive structures



study comes to less than 1.5 min which should make it very
attractive to design engineers. The algorithm is given in section
A.5.The data that support the findings of this study including the
source code are available from the corresponding author upon
reasonable request. For up to date contact information visit
http://www.gennarosenatore.com.

7 Discussion

7.1 Fail-safe criteria

This paper has shown that using adaptation to counteract the effect
of the external load allows large quantities of material to be saved
whilst meeting safety critical requirements. The structure has been
designed to cope with the worst demand in terms of ultimate limit
states even without contribution of the active system. This way, in
case of a power outage and concurrent occurrence of a strong
event the structure load carrying capacity is not compromised.

For stiffness-governed problems, deflection limits are usu-
ally reached much earlier than any critical stress conditions
hence fail-safe is satisfied. Therefore, imposing that the sys-
tem can cope with extreme loading events passively should
not lead to any undue conservatism. For a strength-governed
problem instead, extra constrains must be added to ensure that
ULS criteria are satisfied even without active control. As al-
ready discussed in section 2, this constraint could be relaxed
allowing the active system to contribute to satisfying ULS
attainment which would possibly lead to leaner structures.
This choice depends on the reliability of the control system
and a risk analysis which are implementation dependent. Both
reliability and risk analyses are beyond the scope of this paper.

As described in 5.2, the actuator commands are obtain-
ed by solving a constrained least-square problem. This

means that in case of failure of one or more actuators,
the problem of finding control commands becomes more
constrained. In other words, the structure can still be con-
trolled albeit with less accuracy. In case of actuator fail-
ure, those that are left working will provide more output
energy to reduce displacements within the required limits.
Both these scenarios (i.e. power outage and actuator fail-
ure) were successfully tested on an adaptive truss proto-
type (Senatore et al. 2018a).

7.2 Adaptive structures value and monetary cost
considerations

Whole-life energy minimization is a new design criterion intro-
duced in this work. The traditional design goals employed, for
example, life-cycle cost minimization, do not explicitly address
current and future challenges such as material scarcity, energy
depletion and reduction of building environmental impacts, thus
hindering creative development of strategies to design structures.
Whole-life energy minimization is a more appropriate objective
function (or utility function (Hazelrigg 1998)) which has been
chosen here since it encompasses modern design goals that in-
clude minimising material and operational energy use thus low-
ering environmental impact of load-bearing systems.

A monetary cost comparison was beyond the scope of this
paper and it was carried out for several spatial structures of com-
plex layout in previouswork (Senatore et al. 2018a). In this study,
it was shown that for stiffness-governed problems, the adaptive
solution not only vastly outperforms the passive one in terms of
whole-life energy savings but it becomes competitive also in
terms of monetary cost. Furthermore, even in those cases when
the adaptive design is more expensive as it is the case presented
here, the extra cost with respect to a passive structure is not
wasted but rather, it is used to reduce the environmental impact

Table 3 Design process algorithm and computation times

Process Design/state variables Computation time (ms)

Define topology, shape, material, MUT range, load probability distribution, controlled
degrees of freedom and serviceability limits

For each MUT:

a) Load-path and embodied energy optimisation (Eq. 9) α; Fd
EXT 1500

b) Set force correction ΔFd (Eq. 12) and displacement compensation Δud (Eq. 13) ΔFd, Δud < 1

c) Compute force SF (Eq. 17) and displacement Su (Eq. 19) actuation sensitivity matrices SF, Su 20

d) Find optimal actuator layout (Eq. 20 to Eq. 27) Eff uor Eff F 10

e) Detect load activation threshold P∗∗

f) For each Pjk above P
∗∗ find the optimal force Fjk (Eq. 30) and ΔLjk (Eq. 31) to redirect the

load-path (ΔFjk) and control the shape (Δujk)
Fjk, ΔLjk 30

g) Compute the operational energy (Eq. 34) OpEk < 1

Complete sequence from (a) to (g) ~ 1600

Find the minimum of the total energy and corresponding MUT* MUT* < 1

Repeat (a) to (f) using MUT* to obtain the minimum whole-life energy design

Total computation time (50 MUTs) ~ 83,000

Senatore et al.
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of the structure. In this regard, adaptive structures can be thought
of as energy saving devices. A comparison of the cost of saving
energy using structural adaptation and that of producing energy
using other technologies e.g. PV, reveals that the adaptive solu-
tion is competitive and has a lower cost for slender structures or
for stringent deflection limits (Senatore et al. 2018b).

The focus of this paper was tominimise thewhole-life energy
of the structure and thus its overall environmental impact.
However, structures produced by this method can also fulfil
other functions such as being extremely slender and being ca-
pable of reducing deflections completely thus achieving an ef-
fective “infinite” stiffness. ‘Infinite stiffness’ is here understood
as reducing practically to zero displacements at specific points,
under loading without implying the structure becomes rigid.
This means that adaptive structures can meet much stricter de-
flection limits at the expense of a small amount of operational
energy which gives several benefits including (1) buildings can
be taller (Senatore et al. 2018b), roofs and bridges longer-span-
ning, (2) buildings can have increased floor space via reduction
of structural cores, (3) people comfort and the overall struc-
tural integrity can be improved reducing deflections in
real-time (Senatore et al. 2018a). Adaptive structures de-
signed with the formulation proposed in this paper com-
bine three performance objectives which are usually com-
peting figures of merit: (1) the structure has a low overall
environmental impact (minimum energy design); (2) the
structure can be extremely slender and (3) at the same
time displacements can be controlled within very tight
limits (i.e. extremely stiff). Being able to combine these
three objectives is unique in structural engineering.

8 Conclusions

This paper describes a methodology for the design of structures
with embedded actuation. Structural adaptation is employed to
counteract the effect of loads. The novelty of this work lies in
the development of a methodology that produces, given any
stochastic occurrence distribution of the external load, a mini-
mum energy design. An original interpretation of the non-
elastic part of the strain—e.g. eigenstrain as defined in the
residual-stress literature, lies at the core of the control strategy.
A computationally efficient routine based on eigenstrain as-
signment via the Integrated Force Method and sensitivity anal-
ysis is formulated to place the actuators in optimal positions.

Results obtained using a relatively simple case study—a 20:1
span-to-depth simply supported truss—show that when the de-
sign is governed by live loads with small probability of occur-
rence, such as strong wind storms, snow, earthquakes and unusu-
al crowds, the adaptive structure vastly outperforms its equivalent
passive structure in terms of whole-life energy. The ability to
redirect the load-path and change the shape to control deflections
using minimum operational energy lead to a light-weight

structure that achieves up to 49% total energy savings compared
to an equivalent passive structure designed using state of the art
optimisation methods.

The assumptions taken here regarding the load probability
distribution have been successfully tested via a sensitivity anal-
ysis (Senatore et al. 2018b). The results specific to the case study
discussed in this paper have been generalised via the study of
several spatial structures of complex layout providing both en-
ergy andmonetary cost analysis (Senatore et al. 2018a). A large-
scale prototype designed using the methodology formulated in
this paper has been successfully tested (Senatore et al. 2018c)
validating key assumptions and numerical predictions.

Although this paper focuses on reticular structures, future
work could consider other structural systems. The optimisation
formulation is subject to equilibrium, stress and stability con-
straints which can be generalised to shell, plates and solids.
Force and shape control are based on the use of the Integrated
Force Method which can be generalised to other structural ele-
ment types as shown in (Patnaik et al. 1991).

The method proposed to solve to optimality the synthesis
process stated in Eq. 1–4 (All-in-One formulation) is a nested
approach. The auxiliary design variables Material Utilisation fac-
tor and state variable Load Activation Threshold coordinate em-
bodied energy and actuator layout optimisation which are nested
within an outer process minimising the whole-life energy.
Because this method does not solve the All-in-One problem di-
rectly, solution optimality cannot be guaranteed. However, the
substantial energy savings obtained and its scalability to struc-
tures of complex layout made of many elements (Senatore et al.
2018a) show that the proposed method has undeniable merits.
Future work could look into formulating an alternative imple-
mentation based on stochastic search or mixed-integer program-
ming to assess the quality of the solution provided by the method
introduced in this paper.

The synthesis process formulated in this paper can be readily
extended to shape and topology optimisation by including nodal
coordinates and structural layout in the design variables. On-
going work has already extended this methodology to design
structures that adapt through large shape changes (via shape op-
timisation and geometric non-linear analysis) (Reksowardojo
et al. 2017; Reksowardojo et al. 2018) as well as to include
joint-stiffness control through materials with variable stiffness
properties (e.g. shape memory polymers) (Senatore et al. 2017;
Wang et al. 2018). Futurework could investigate shape and joint-
stiffness control to tune the fundamental frequencies in order to
reduce the dynamic response to loading.
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Glossary

actLYT (nACTs × 1) actuator layout
AEQ m⋅npð Þ � nþ nþ nRð Þ⋅npð Þ½ � equilibrium constraints

(block matrix)

AULS 2⋅n⋅npð Þ � nþ nþ nRð Þ⋅npð Þ½ � ULS constraints
(block matrix)

AULSb n⋅npð Þ � nþ nþ nRð Þ⋅npð Þ½ � non-linear ULS constraints
(block matrix)

BEXT [m × (n + nR)] equilibrium matrix extended
to include support reactions

BRED [(m − nR) × n] equilibrium matrix reduced
to the unconstrained degrees
of freedom

β[(n · np) × 1] total strain
βe [(n · np) × 1] elastic strain
β0[(n · np) × 1] eigenstrain
~β
0
n� 1ð Þ eigenstrain unitary length

change
C [(r · np) × (n · np)] geometric compatibility

matrix
ΔL [(n · np) × 1] actuator length change vector
ΔLALL [(n · np) × 1] actuator length change vector

(nACTs = n)fΔLALL n � npð Þ � 1½ � actuator length change vector
for unit length change
(nACTs = n)

ΔLRED [(nACTs · np) × 1] actuator length change vector
reduced to the number of
actuators

ΔF [(n · np) × 1] load-path redirection
(F −FCOMP)

Δu [(m · np) × 1] displacement correction
(uSLS − uCOMP)

ΔuCDOFs nCDOFs⋅npð Þ � 1½ � displacement correction vector
reduced to the controlled
degrees of freedom

eff F(n × np) actuator partial efficacy for
strength-governed design

Eff F(n × 1) actuator global efficacy for
strength-governed design

eff u(n × np) actuator partial efficacy for
stiffness-governed design

Eff u(n × 1) actuator global efficacy for
stiffness-governed design

η actuator mechanical efficacy
F [(n · np) × 1] optimal (non-compatible)

force vector
FEXT [((n + nR) · np) × 1] optimal force vector extended

to include support reactions
FCr(n × 1) critical forces (Euler buckling)
FCOMP [(n · np) × 1] compatible forces

FCOMP_ L[(n · np) × 1] compatible forces caused by
live load

FPL[(n · np) × 1] optimal forces under
permanent load

G [(n · np) × (n · np)] flexibility matrix
(block matrix)

H(np × 1) live load hours of occurrence
J [((m − nR) · np) × (n · np)] IFM deformation coefficient

matrix (block matrix)
K [(m · np) × (m · np)] stiffness matrix (block matrix)
L (n × 1) structural element lengths
LAT Load Activation Threshold
OpE operational energy
P [(m · np) × nd] live load probability

distribution
Pd[(m · np) × 1] design load
PEIG [(n · np) × 1] eigenstrain load
~PEIG n� 1ð Þ eigenstrain load caused by a

unitary length change
PRED[(m − nR) × 1] external load vector

reduced to the unconstrained
degrees
of freedom

P∗[(r · np) × 1] IFM external load
P∗∗[(m · np) × 1] load activation threshold
r degree of static indeterminacy
S [(n · np) × (n · np)] IFM governing matrix
SF[(n · np) × (n · np)] actuation force sensitivity

matrix

S FjRED n⋅npð Þ � nACTs⋅npð Þ½ � actuation force sensitivity
matrix reduced to nACTs

columns
Su[(m · np) × (n · np)] actuation displacement

sensitivity
SujCDOFs nCDOFs⋅npð Þ � n⋅npð Þ½ � actuation displacement

sensitivity matrix reduced
to CDOFs rows

Su∣RED[(nCDOFs ⋅ np) × (nACTs ⋅ np)] actuation displacement
sensitivity matrix reduced to
CDOFs rows and nACTs

columns
sT[n × (n + nR)] strength limit in tension
sB[n × (n + nR)] strength limit in buckling
sC[n × (n + nR)] strength limit in compression
σC material strength limit in

compression
σB(n × 1) critical stress (Euler buckling)
σT material strength limit in

tension (yield point)
tSERVICE expected service life
uCOMP[(m · np) × 1] compatible nodal

displacements
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uSLS[(m · np) × 1] required nodal displacements
ω actuator working frequency
x [(n + (n + nR) · np) × 1] design variables vector

(concatenates α and FEXT)
CDOF controlled degree of freedom
d design load occurrence in the

load probability distribution
DOF degree of freedom
EE embodied energy (MJ)
ee material energy intensity

factor (MJ/kg)
IFM Integrated Force Method
m number of degrees of freedom
MUT Material Utilisation
n number of structural elements
nACTS number of actuators
nCDOFs number of controlled degrees

of freedom
nd number of samples in the load

probability distribution
np number of load cases
nR number of constrained degrees

of freedom
α(n × 1) cross-section areas

A. Appendix

A.1 Vector Formulation

The vector formulation given here is to extend load-path and
embodied energy optimisation to account for multiple load cases.
The indices i, j and k refer to the ith structural element, the jth load
case and kth occurrence of the live load probability distribution
respectively. Note that the kth occurrence of the load distribution
corresponding to the design load is denoted with the subscript d.
It is convenient to concatenate cross-section area vector α and
optimal force vector FEXT

d (including support reactions), into a
single design variable vector x:

x ¼

α
FEXT
1d
⋮
FEXT
jd
⋮
FEXT
pd

2
6666664

3
7777775;

lbα
lb1
⋮
lb j

⋮
lbp

2
6666664

3
7777775≤x≤

ubα
ub1
⋮
ub j

⋮
ubp

2
6666664

3
7777775 ð35Þ

where lb and ub lower and upper bound respectively. The
non-linear equality constraints (force-equilibrium balance)
Eq. 6, are rewritten as:

0 BEXT 0 ⋯ 0
0 0 BEXT ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ BEXT

2
664

3
775 �

α
FEXT
1d
⋮
FEXT
jd
⋮
FEXT
pd

2
6666664

3
7777775−

P1d

⋮
Pjd

⋮
Ppd

2
66664

3
77775 ¼ 0;

ð36Þ
which in compact form becomes:

AEQ � x−Pd ¼ 0; ð37Þ
where BEXT [m × (n+ nR)] is the equilibrium matrix extended to
include support reactions. The matrices sT and sC are defined to
account for the admissible stress in tension and compression of all
the elements. For example, sTis:

sT ¼

1

MUTσT 0 ⋯ 0 0 ⋯ 0

0
1

MUTσT ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯

1

MUTσT 0 ⋯ 0

2
6666664

3
7777775;

ð38Þ
sC is identical but using σC as admissible stress in compression.
Both the matrices sT and sC have dimensions [n× (n+ nR)], the
additional nR zero columns are needed to consider the support
reactions. These matrices are combined to form the complete set
of linear inequality constraints (ULS) given in Eq. 7 (a) for all the
load cases:

−I sT 0 ⋯ 0
−I sC 0 ⋯ 0
−I 0 sT ⋯ 0
−I 0 sC ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
−I 0 0 ⋯ sT

−I 0 0 ⋯ sC

2
666666664

3
777777775
�

α
FEXT
1d
⋮
FEXT
jd
⋮
FEXT
pd

2
6666664

3
7777775≤0; ð39Þ

or in compact form:

AULS � x≤0; ð40Þ
where I is the (n × n) identity matrix. The non-linear stability
constraints (ULSb) in Eq. 7 (b) are implemented using the
Euler buckling formulation which in explicit form for the ith

element is:

Fijd

αi
≤

π2EiI i
KiLið Þ2

1

αi
¼ FCr

i
1

αi
¼ σB

i ; ð41Þ

where Ii is the smallest second moment of area of the cross sec-
tion;Ei is Young’smodulus andKi is the effective length factor. A
matrix sB identical in size to sTand sC but using the term 1=σB

i as

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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the diagonal component is defined to group stability constraints
for all elements. Considering all the load cases:

−I sB 0 ⋯ 0
−I 0 sB ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
−I 0 0 ⋯ sB

2
664

3
775 �

α
FEXT

1d
⋮
FEXT

jd
⋮
FEXT

pd

2
6666664

3
7777775≤0; ð42Þ

or in compact form:

AULSb � x≤0: ð43Þ

Using Eqs. 37, 40 and 43 the load path and embodied
energy optimisation problem can be written as:

min
x

∑
n

i
αiLiρieei

s:t:

AEQ � x−Pd ¼ 0

AULS � x≤0
AULSb � x≤0

:

8>>>>>>>>><
>>>>>>>>>:

ð44Þ

A.2 On the Solution of the Load Path Optimisation
(LPO) Problem

The solution to the problem formulated in Eq. 44 is the global
minimum weight structure in the absence of compatibility and
global instability constraints. From Eq. 36 and Eq. 39 or Eq. 42
the number of optimisation constraints and variables can be stated
as:

constraints ¼ m DOFsð Þ þ n elementsð Þ½ � � nP load casesð Þ
variables ¼ n cross sectionsð Þ þ n forcesð Þ þ nR reactionsð Þ
 � � nP load casesð Þ

�
:

ð45Þ

When the number of variables is larger than or equals the
number of constrains:

n−np � m−nR

 �

≥0: ð46Þ

When Eq. 46 is satisfied, each member of the structure can
be utilised at capacity for all the load cases. When Eq. 46 is
satisfied with a strict inequality, the problem is under-
constrained (i.e. the number of variables is bigger than the
number of constraints) hence there are infinitely many solu-
tions. The minimisation of the objective function returns the
solution corresponding to the minimum weight structure.
When Eq. 46 is an equality, the number of variables equals

the number of constraints hence the solution of the prob-
lem stated in Eq. 44 is unique. However, in most cases the
problem is over-constrained hence Eq. 46 is not satisfied.
This means that ultimate limit state constraints can only
be satisfied by equality for the worst load case and must
be satisfied by inequalities for any other load case so that
members are utilised below capacity for all the load cases
except the worst one.

The degree of indeterminacy r of a general pin-
jointed framework can be computed as the dimension
of the null-space of the extended equilibrium matrix
BEXT which is equal to the number of structural elements
n minus the row-space of BEXT plus the number of sup-
port reactions:

r ¼ n−rank BEXTð Þ þ nR: ð47Þ

For kinematically determinate topologies, the rank of the
equilibrium matrix equals the number of degrees of freedom
m, hence Eq. 47 becomes the well-known Maxwell’s equation:

r ¼ n−mþ nR: ð48Þ

Using Eq. 48 with Eq. 46 and solving for r gives:

r≥n 1−
1

np

� 	
: ð49Þ

For instance, when np= 1 then the static indeterminacy r ≥
0; np= 2, r ≥ n/2; np= 3, r ≥ 2n/3 and so on. Intuitively this means
that to achieve 100% utilisation of each element for all load cases
there must be enough redundancy such that the load path can be
redirected. Figure 22 shows an example of a planar structural
layout achieving member utilisation at capacity for two load
cases.

A.3 Actuation as Eigenstrain via the Integrated Force
Method (IFM)

A.3.1 Single Load Case

Let us consider the generic formulation first for a single load
case. In contrast to displacement methods the IFM solves di-
rectly for forces. Equilibrium equations can be written in ma-
trix form:

BRED � F ¼ PRED; ð50Þ
where F is the internal force vector, BRED is the equilibrium
matrix reduced to the unconstrained degrees for freedom (no
supports), PRED is the external load reduced to the uncon-
strained degrees of freedom. For a statically indeterminate
structure, BRED is rectangular and to solve for forces, equilib-
rium must be supplemented with r (n −m + nR) equations of
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compatibility:

C � β ¼ 0; ð51Þ
whereβ is the element total deformation vector andC(r × n) is
the null space of the equilibrium matrix:

C ¼ null BREDð ÞT ð52Þ

Equation 51 can be interpreted as a statement of compati-
bility using virtual work with the self-stress vectors as the
rows of C and no external load. The total deformation of the
structural members is:

β ¼ βe þ β0; ð53Þ
where βe is the elastic deformation due to the applied
loads and β0 the non-elastic part of the total strain
which is referred to as eigenstrain (thermal, plastic,
creep strain or lack of fit) in some of the residual-
stress literature (Reissner 1931; Mura 1991; Irschik and
Ziegler 2001) but in in our case it is thought of as the
length change in each element as if it was an actuator.
For a linear elastic material, βe is related to the length
member force vector F through the local flexibility ma-
trix G (n × n):

G � F ¼ βe∘L; ð54Þ
where L is the element length vector and the flexibility
matrix G is a diagonal matrix (for truss structures) with
components:

Gii ¼ Li
Eiαi

: ð55Þ

Using Eq. 53 and Eq. 54, the compatibility conditions in
Eq. 51 become:

C � G � Fð Þ ¼ −C � β0∘L
� �

: ð56Þ

BRED

C � G
� �

� F ¼ PRED

PEIG

� �
; ð57Þ

Combining equilibrium Eq. 50 and compatibility Eq. 56

into a single matrix statement:where the load vector PEIG,
here named as the eigenstrain load vector, is defined by:

PEIG ¼ −C � β0∘L
� �

; ð58Þ

The eigenstrain load vector PEIG(r × 1) complements the
external load vector offering a way to set directly the actuator
length changes ΔL(n × 1) defined as:

ΔL ¼ β0∘L: ð59Þ
Rewriting Eq. 57 in compact form and solving for forces:

F ¼ S−1 � P*; ð60Þ
where S(n × n) is the governing matrix of the IFMmethod and
P∗(n × 1) the extended external load vector. Assuming a
known actuator layout, Eq. 60 returns the compatible load
path FCOMP when ΔL = 0 or the optimal force F when ΔL is
computed via Eq. 31.

Once the force vector F is known the displacements can be
obtained as:

u ¼ J � G�FþΔLð Þ
J¼first m−nR

� �
rows of S−1
 �T�

; ð61Þ

where J is the deformation coefficient matrix composed by the
first m − nR rows of [S−1]T. The ith line of Eq. 61 can be
interpreted as a statement of virtual work where the vector of
total deformations β ∘ L =G · F + ΔL is pre-multiplied by the
internal force vector in equilibrium with a single unit load
associated with the ith degree of freedom (with no initial de-
formation) which is exactly the ith column of S−1. As for the
internal forces, Eq. 61 returns the compatible displacements
uCOMP when ΔL = 0 or the required displacements uSLS when
ΔL is computed via Eq. 31.

L1 

L2 

Fig. 22 Structural configuration
with elements utilised at capacity
for 2 load cases
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A.3.2 Multiple Load Cases

Consideringmultiple load cases and the generic kth occurrence
of the load probability distribution, the eigenstrain load vector
becomes:

PEIG
k ¼ −

C 0 ⋯ 0
0 C ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ C

2
664

3
775 �

β0
1k
⋮
β0
jk

⋮
β0
pk

2
66664

3
77775∘

L
⋮
L
⋮
L

2
66664

3
77775; ð62Þ

or in compact form:

P
EIG

k ¼ −C � ΔLk : ð63Þ

Optimal and compatible forces are obtained as:

S 0 ⋯ 0
0 S ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ S

2
664

3
775
−1

�

P*
1k
⋮
P*
jk

⋮
P*
pk

2
66664

3
77775 FCOMP

k if β0
k∘L ¼ ΔLk ¼ 0

Fk if β0
k∘L ¼ ΔLk≠0

�
:

ð64Þ
Similarly, for the compatible displacements (without

actuation):

uCOMP
k ¼

J 0 ⋯ 0
0 J ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ J

2
664

3
775 �

G 0 ⋯ 0
0 G ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ G

2
664

3
775 �

FCOMP
1k
⋮

FCOMP
jk
⋮

FCOMP
pk

2
66664

3
77775

0
BBBB@

1
CCCCA;

ð65Þ

or in compact form:

uCOMP
k ¼ J � G � FCOMPð Þ; ð66Þ

and for the displacements compensated using actuation:

uSLSk ¼
J 0 ⋯ 0
0 J ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ J

2
664

3
775 �

G 0 ⋯ 0
0 G ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ G

2
664

3
775 �

F1k

⋮
Fjk

⋮
Fpk

2
66664

3
77775þ

ΔL1k

⋮
ΔLjk

⋮
ΔLpk

2
66664

3
77775

0
BBBB@

1
CCCCA;

ð67Þ

or in compact form:

uSLSk ¼ J � G � Fk þ ΔLkð Þ: ð68Þ

A.4 Passive Structure Optimisation

To quantify the mass savings achievable through adaptation,
the adaptive solution is benchmarked against an equivalent
optimised passive structure. Since the structure is considered
passive here, serviceability limits on displacements must be
enforced during size optimisation. Using the integrated force
method, the inequality constraints for serviceability are formu-
lated as:

J � G � Fdð Þj j−uSLS ≤0; ð69Þ

where J is the deformation coefficient matrix defined in Eq.
61. Strength (ULS) and stability (ULSB) inequality constraints
are the same as Eq. 40 and Eq. 43 respectively. The problem is
formulated as:

min
α

∑
n

i¼1
αiLiρieei

s:t:

J � G � Fdð Þj j−uSLS ≤0

AULS � Fd−α≤0

AULSb � Fd−α≤0

;
8>>>>>>>><
>>>>>>>>:

ð70Þ

where AULS and AULSB are constraint matrices identical
to those defined in Eq. 40 and Eq. 43 but the first
column is removed because the design variable vector
(in this case α) no longer includes Fd. The problem
was solved as done for Eq. 44. Convergence was
achieved in 30 iterations within 700 ms on average.
The solution is shown in Fig. 18. The main difference
with the problem in Eq. 44 is the inequality constraint
in order to limit nodal displacements to stay within a
required serviceability limit state and thus it offers a
way to assess how force and shape control affect the
synthesis process. For this reason, this method is cho-
sen here to benchmark the performance of the adaptive
structure. In addition, this method gives results compa-
rable with those obtained by the Modified Fully
Utilised Design (Patnaik et al. 1998) and outperforms
it when multiple load cases are considered.
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