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Abstract
This paper gives a new formulation to design adaptive structures through total energy optimization (TEO). This
methodology enables the design of truss as well as tensegrity configurations that are equipped with linear actuators
to counteract the effect of loading through active control. The design criterion is whole-life energy minimization which
comprises an embodied part in the material and an operational part for structural adaptation during service. The
embodied energy is minimized through simultaneous optimization of element sizing and actuator placement, which
is formulated as a mixed-integer nonlinear programming problem. Optimization variables include element
cross-sectional areas, actuator positions, element forces, and node displacements. For tensegrity configurations, the
actuators are not only employed to counteract the effect of loading but also to apply appropriate prestress which is
included in the optimization variables. Actuator commands during service are obtained through minimization of the
operational energy that is required to control the state of the structure within required limits, which is formulated as a
nonlinear programming problem. Embodied and operational energy minimization problems are nested within a uni-
variate optimization process that minimizes the structure’s whole-life energy (embodied + operational). TEO has been
applied to design a roof and a high-rise adaptive tensegrity structure. The adaptive tensegrity solutions are
benchmarked with equivalent passive tensegrity as well as adaptive truss solutions, which are also designed through
TEO. Results have shown that since cables can be kept in tension through active control, adaptive tensegrity structures
require low prestress, which in turn reduces mass, embodied energy, and construction costs compared to passive
tensegrity structures. However, while adaptive truss solutions achieve significant mass and energy savings compared
to passive solutions, adaptive tensegrity solutions are not efficient configurations in whole-life energy cost terms.
Since cable elements must be kept in tension, significant operational energy is required to maintain stable equilibrium
for adaptation to loading. Generally, adaptive tensegrity solutions are not as efficient as their equivalent adaptive truss
configurations in mass and energy cost terms.

Keywords Adaptive structures . Tensegrity structures . Integrated structure-control . Active structural control . Structural
optimization . Sustainable building design

1 Introduction

1.1 Previous work

Adaptive structures are equipped with sensors and actuators to
actively counteract the effect of external loads. Sensors are
employed to monitor the structure response (e.g., stress, dis-
placements). Actuator actions change internal forces and the
structural shape to control the response within required limits.
Active systems have been investigated to control the structural
response under extreme loading events (Utku 2018). Several
systems have been considered including active cable tendons
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for bridges (Rodellar et al. 2002), active bracing and columns
(Reinhorn et al. 1992; Weidner et al. 2018) for buildings, as
well as semi-active variable stiffness and damping structural
joints (Wang et al. 2020a; b). Active shape control has also
been investigated for deployable structures, space cranes, and
antennas (Tibert 2002; Veuve et al. 2015).

Tensegrity structures are pin-jointed systems consisting of
cables and struts that require appropriate prestress to maintain a
stable equilibrium. Generally, tensegrity structures have a high
stiffness-to-weight ratio and thus have been investigated as light-
weight civil structures such as roof systems (Gilewski 2015),
cable domes (Kmet and Mojdis 2015), and pedestrian bridges
(Ali et al. 2010). Most optimization methods that have been
proposed to design passive tensegrity structures (i.e., not
equippedwith an actuation system) aim to obtainminimummass
and maximum stiffness solutions. Masic and Skelton (Masic and
Skelton 2004) presented an optimization method based on non-
linear programming to obtain tensegrity structures that have an
optimal mass-to-stiffness ratio. Chen and Skelton (Chen and
Skelton 2020) proposed a general approach based on nonlinear
programming to designminimummass tensegrity structures sub-
ject to equilibrium, stress, and buckling constraints. Skelton et al.
(Skelton et al. 2014) presented a design methodology to obtain
tensegrity bridges that comprise self-similar repetitions of a basic
unit inspired by Michell minimum mass solutions for a centrally
loaded beam (Michell 1904). Topology optimization methods
have also been proposed to design passive tensegrity structures
(Kanno 2013; Wang et al. 2020a; b). For example, least-weight
tensegrity structures have been obtained through discrete struc-
tural topology optimization based on mixed-integer linear pro-
gramming subject to equilibrium and stress constraints in (Kanno
2013) as well as to buckling constraints in (Xu et al. 2018).

Since cables can only carry tension, appropriate prestressmust
be applied to maintain stable equilibrium and to ensure that the
cable elements do not slack under external loading. Depending
on the structure geometry and loading, typically, a high prestress
level is required which might be impractical during construction
resulting in an increase of labor costs as well as an increase of
element cross-sectional areas to ensure that stress and stability
limits are met (Quagliaroli et al. 2015). However, if some of the
cables or struts in a tensegrity structure are equipped with linear
actuators, it is generally possible to control the response under
loading without the need of a large prestress because internal
forces and node displacements can be modified through active
control (Fest et al. 2003). In addition, prestress can be applied
directly through controlled length changes of linear actuators that
are installed on the structure elements (Adam and Smith 2008).

Integrated structure-control optimization methods for
tensegrity systems have been formulated with the objective
to minimize control energy, structure mass, or a combination
of both.Masic et al. (Masic et al. 2005) presented a method for
prestress optimization of tensegrity structures to obtain an
optimal linear-quadratic regulator (LQR) performance. Raja

and Narayanan (Raja and Narayanan 2007) employed optimal
control theory based on H2 and H∞ controller with full-state
and limited-state feedback for vibration suppression of
tensegrity structures equipped with piezoelectric actuators.
In (Raja and Narayanan 2009), the control method given in
(Raja and Narayanan 2007) was nested within an optimization
strategy based on a genetic algorithm to improve the controller
performance. Li et al. (Li et al. 2011) formulated a method for
class 1 and class 2 tensegrity systems to minimize simulta-
neously mass and control energy, given a predetermined set of
locations for sensors and actuators as well as constraints on the
system response. The design of a pedestrian bridge made of
six ring-shaped tensegrity modules and spanning 21.6 m was
presented in (Ali et al. 2010). Each module comprised 15
struts held together by 30 cables. Cable prestress and element
cross-sectional areas were treated as design variables. A ge-
netic algorithm was employed to minimize a cost function of
the material member monetary cost multiplied by a factor to
account for the effect of prestress on construction cost. Design
constraints included stress and element buckling limits as well
as deflection limits. A minimum cost solution was obtained
that satisfied all constraints. It was found that including pre-
stress in the design variables is important because minimum
material cost solutions generally require a high level of pre-
stress, which usually increases construction costs.

In most existing design methods for adaptive tensegrity
structures, the actuator positions (i.e., actuator placement or
layout) have been set a priori to avoid the need for a
mixed-integer problem formulation. Alternatively, sequential
approaches have been proposed to optimize structure layout
and actuator placement separately. These methods therefore
cannot guarantee solution optimality which involves
obtaining structure and actuator layouts simultaneously as a
solution of a mixed-integer problem.

Generally, well-designed adaptive structures are able to oper-
ate closer to capacity owing to the ability to reduce the effect of
loading through active control instead of solely through passive
load-bearing resistance (i.e., material and form) (Teuffel 2004;
Sobek 2016). This way, through adaptation, structures can be
designed with a significantly better material utilization compared
to passive structures (Böhm et al. 2019; Reksowardojo et al.
2020). However, adaptive structures might require significant
energy for adaptation to loading during service. Hence, material
savings might come at a high total energy cost. To address this
challenge, Senatore et al. (Senatore et al. 2019) proposed an
integrated structure-control optimization method to design adap-
tive pin-jointed structures through “whole-life” energy minimi-
zation. Whole-life energy (i.e., total energy) consists of an em-
bodied part in the material and an operational part for structural
adaptation during service. Numerical and experimental testing
has shown that minimum energy adaptive structures not only
have a better material utilization but also a much lower energy
impact and thus a lower overall environmental impact. This
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methodology was applied to design spatial structures of complex
layout, showing that minimum energy adaptive structures can
save up to 40–50% of the total energy for stiffness governed
designs (e.g., long-span bridges and high-rise structures) com-
pared to weight-optimized passive structures (Senatore et al.
2018a; Senatore and Reksowardojo 2020). Experimental testing
confirmed numerical predictions (Senatore et al. 2018b;
Reksowardojo et al. 2019) showing that the ability to reduce
deflections actively through shape control enables new designs
such as super slender high-rise structures. In (Senatore et al.
2019), whole-life energy minimization was decoupled into em-
bodied and operational energy minimization. Embodied energy
minimizationwas further decoupled into two subproblemswhich
are structural sizing and actuator placement optimization. For this
reason, solution optimality could not be guaranteed. Wang and
Senatore (Wang and Senatore 2020a) presented a reformulation
of the method given in (Senatore et al. 2019) whereby all design
variables (i.e., cross-sectional areas, actuator positions, and con-
trol commands) are optimized simultaneously through an
all-in-onemodel based onmixed-integer nonlinear programming
(MINLP). A comparison of the two approaches was carried out
in (Wang and Senatore 2020a) showing that both methods pro-
duce solutions that are only marginally different in energy cost
terms. However, the nested formulation is significantly more
efficient in computation time terms, which allows obtaining so-
lutions for structures of complex layout within a fraction of the
time required by the all-in-one formulation.

The methods given in (Senatore et al. 2019; Wang and
Senatore 2020a) have been formulated for pin-jointed config-
urations in which all elements can take tension and compres-
sion, and thus there is no need to include prestress to ensure
cable elements do not slack during adaptation to loading (i.e.,
stable equilibrium). For this reason, these methods cannot be
directly applied to design adaptive tensegrity structures
through energy minimization.

1.2 New contribution

The design of adaptive tensegrity structures through energy min-
imization has received little attention. In none of the existing
methods, the total energy (embodied + operational) required by
the structure for the entire service life has been explicitly set as
the objective function. No rigorous study has been carried out to
benchmark energy and material costs of an active tensegrity
structure with those of equivalent passive designs.

The work described in this paper provides an answer to these
open research gaps. A new general method is formulated to
design minimum energy adaptive structures including tensegrity
configurations. Prestress is added to the optimization variables
which include element sizing, actuator positions as well as con-
trolled and uncontrolled states (forces and displacements) under
loading. The actuators are not only employed to counteract the
effect of loading but also to apply appropriate prestress to ensure

self-equilibrium, which enables the design of adaptive tensegrity
structures. This new method is applied to design a roof and a
high-rise adaptive tensegrity structure, which are benchmarked in
mass and energy cost terms against weight-optimized passive
tensegrity and truss structures.

1.3 Outline

The paper is organized as follows. Section 2 outlines a meth-
odology to design adaptive tensegrity structures through ener-
gy minimization. Section 3 gives a formulation to apply pre-
stress through controlled length changes of linear actuators
that are installed in series with the structural elements.
Sections 4 and 5 give embodied and operational energy min-
imization formulations, respectively. Section 6 gives the
whole-life energy minimization formulation which coordi-
nates embodied and operational energy minimization prob-
lems. Section 7 presents applications of the design methodol-
ogy through numerical examples. Sections 8 and 9 conclude
this paper.

2 Synthesis of minimum energy adaptive
structures

2.1 Total energy minimization (TEO)

This work builds on the formulations given in (Senatore et al.
2019; Wang and Senatore 2020a) by adopting the whole-life
energy criterion to design adaptive structures. As for (Senatore
et al. 2019), whole-life energy minimization is decoupled into
two subproblems: embodied and operational energy minimi-
zation. Since it was proven numerically that the all-in-one
formulation given in (Wang and Senatore 2020a) and the
nested formulation given in (Senatore et al. 2019) produce
similar solutions in energy cost terms, a sequential approach
is adopted in this work to reduce optimization complexity.
The all-in-one formulation (Wang and Senatore 2020a) in-
volves a very large number of variables as well as strong
nonlinearity, and therefore, it can only be applied to relatively
small-sized design problems. However, different from the
nested formulation given in (Senatore et al. 2019), in this work
element sizing and actuator placement are optimized simulta-
neously. This way, the actuator system embodied energy (and
thus the mass) is directly included in the embodied energy
minimization process which is formulated as a mixed-integer
programming problem. Element cross-sectional areas and ac-
tuator positions are the primary design variables while internal
forces and node displacements are treated as state variables
(Section 4). For tensegrity configurations, prestress is includ-
ed in the optimization variables, and it is applied directly
through actuation. Different from (Senatore et al. 2019;
Wang and Senatore 2020a), operational energy minimization

Design of adaptive structures through energy minimization: extension to tensegrity



is formulated as a nonlinear programming problem. The ob-
jective function is the minimization of the actuator work that is
required for structural adaptation during service. The optimi-
zation variables are the actuator commands to control the re-
sponse of the structure within required stress, stability, and
deflection limits (Section 5).

In (Senatore et al. 2019), embodied and operational energy
minimization is coordinated through an auxiliary variable de-
noted as material utilization (MUT). The MUT is the
demand-to-capacity ratio for the structure as a whole, which
is defined in the range 0% <MUT ≤ 100% in percentage terms
with respect to the admissible stress.MUT is related to another
auxiliary variable called the load activation threshold (LAT).
LAT was defined in (Senatore et al. 2019) as the lowest inten-
sity loading event that causes a violation of stress and/or dis-
placement limits. LAT is defined in the range 0% ≤ LAT ≤
100% in percentage terms with respect to the maximum ex-
pected load during service. Figure 1a and b show a generic

plot of whole-life, embodied, and operational energy as func-
tions of LAT and MUT, respectively.

Structural adaptation is required to counteract the effect of
loading events that are larger than LAT.MUT and LAT are in a
one-to-one correspondence. Low embodied energy structures
(lightweight and flexible, highMUT) are usually characterized
by a low LAT because active control is required to counteract
low-intensity loading events which are likely to occur relatively
often. On the contrary, high embodied energy structures (high
mass, stiff, low MUT) are characterized by a high LAT. While
in (Senatore et al. 2019), LAT was treated as a state variable, in
this work, embodied and operational energy minimization is
nested within a univariate optimization process whose variable
is the LAT (Section 6). LAT is varied in a predefined range. For
each LAT, a new configuration is obtained by minimizing em-
bodied and operational energy. The configuration of minimum
total energy (embodied + operational) is then selected as the
optimum solution. The formulation given in this work allows to

Fig. 1 Embodied, operational, and total energy as a function of load activation threshold (LAT)
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explicitly assign LAT according to practical design re-
quirements. For example, LAT could be chosen based on
the expected frequency of occurrence of a certain loading
event as well as the expected life cycle of control system
components. This methodology can be applied to obtain
minimum energy truss as well as tensegrity configura-
tions. For tensegrity configurations, cable and strut topol-
ogy must be defined as part of the input element topology,
and the output includes the optimal prestress state. The
total energy optimization (TEO) process is illustrated in
the flowchart shown in Fig. 2.

2.2 Loading conditions

To compute the operational energy that is required for
structural adaptation during service, a probability occur-
rence of the load must be defined. The structure is as-
sumed to be subjected to a permanent Ppermanentand a
randomly fluctuating live load Plive. For simplicity, all
loads that are not permanent are considered as live loads
including events such as high winds and unusual crowds.
Following (Senatore et al. 2019), the live load probability
distribution is modeled with a log-normal function which
is suitable for a generic random loading occurrence. For
specific loading events, other probability distributions
should be adopted. Figure 3a shows the plot of a generic
log-normal cumulative distribution. Assume there are np

load cases and j indicates the jth load case. The load prob-
ability distribution is discretized into nd bins. The load
event corresponding to the kth bin (i.e., occurrence) is

denoted as Plive
jk . The characteristic value is set based on

the strongest intensity loading event Plive
jd (i.e., design

load) that is expected during service. To define the
log-normal probability distribution, the characteristic val-
ue is typically set to the 95th percentile of the associated
normal distribution. However, the characteristic value
could be varied depending on the expected probability
of occurrence of each load case. For simplicity, the mean
μ of the associated normal distribution is set to zero. Once
the mean and the characteristic value are set, the standard

deviation (SD) of the associated normal distribution can
be computed as

SDj ¼
log max Plive

jd

� �� �
−μ

Φ−1 0:95ð Þ ð1Þ

where Φ−1is the inverse of the cumulative distribution
function of a standard normal distribution. LAT is indicat-
ed by a dashed line in Fig. 3a. As discussed in 2.1, LAT is
the lowest intensity loading occurrence that causes a vio-
lation of stress and/or displacement limits. LAT is defined
in percentage terms with respect to the design load

Plive
LAT ¼ LAT ⋅Plive

d . Figure 3b shows the plot of the
discretized probability density scaled by the expected ser-
vice life which is typically set to 50 years. The duration of
each loading event Δtjk is obtained through scaling the
expected structure service life with the kth occurrence
probability for the jth load case.

2.3 Structural adaptation phases

The actuation system comprises linear actuators. A linear ac-
tuator is installed in series with a structural element. The ac-
tuators modify internal forces and node displacements through
length changes. Since an actuator is installed in series, the
element force and the actuator force are the same. In other
words, the actuator changes length while subjected to a force
that is identical to that of the element onto which it is installed.
Figure 4 shows a conceptual diagram of the structural adapta-
tion process. For simplicity, the structure is indicated by a
single line, and the actuation system is not represented.
There are three phases: phase 0, phase I, and phase II.

Phase 0 adaptation is performed to apply prestress (for
tensegrity configurations) and counteract the effect of
Ppermanent. Forces and displacements at phase 0 completion
are the default state (state c). In step (a), the structure is
prestressed through a first actuator length change ΔL0 that
causes a change of forces ΔF0 to ensure self-equilibrium

Fig. 3 a Live load cumulative distribution function (CDF); b load event duration (Senatore et al. 2019)
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before external loading is applied. In step (b), actuator com-
mand ΔLP is applied to control element forces and node
displacements within required limits under permanent load.
Phase 0 step (b) can be thought of as a pre-cambering process
to ensure that deflections under Ppermanent are kept as small as
possible. Note that phase 0 adaptation is performed only once
during construction and before service. Phase I adaptation (c–
e) is performed through ΔLL to counteract the effect of Plive.
Phase II adaptation (e–g) is performed through -ΔLL to elim-
inate residual effects caused by actuation in phase 1 after Plive

is removed so that the structure can return to the default state
(state g is identical to state c). Since element forces, node
displacements and actuator length changes are obtained from
the superposition of different terms, it is convenient to refer to
each state through superscript ψ as

Fψ;∀ψ∈ a; b; c; d; e; f ; gf g
uψ;∀ψ∈ a; b; c; d; e; f ; gf g

ΔLψ;∀ψ∈ a; b; c; d; e; f ; gf g
: ð2Þ

2.4 Model assumptions

The following assumptions are adopted:

& Following (Skelton and Oliveira 2009), a general defini-
tion of tensegrity structures is adopted in this study. That
is, a tensegrity structure is a pin-jointed system consisting

of cables and struts which require appropriate prestress to
maintain stable equilibrium under loading, i.e., cable ele-
ments do not slack. Only kinematically determinate
tensegrity systems are considered in this work, i.e., which
do not contain mechanisms.

& Elements are pin-jointed and all loads are transferred to
nodes as point loads.

& The formulation is implemented with the assumption
of small strains and small displacements. To prevent
potential stability issues caused by finite mechanisms
that could develop through cable slackness, cable
elements are kept in tension under all loading events
through appropriate prestress and control actions.

& The structure dynamic response is assumed to be con-
trolled by other means; hence, seismic design criteria are
not considered. In addition, fatigue is not considered as a
limit state because the structure is designed to be con-
trolled under strong loading events which occur rarely.

3 Prestress applied through actuation

Consider a tensegrity structure that comprises ne elements and
nn joints in d-dimensions. The number of free degrees of free-
dom is nf = dnn - nc where nc is the number of support condi-
tions. Prestress must be applied in a tensegrity system to main-
tain self-equilibrium by ensuring tension and compression

Fig. 4 Structural adaptation process
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states in cables and struts, respectively (Skelton and Oliveira

2009; Zhang and Makoto 2015). Denote F0∈ℝne�1 the pre-
stress state before external loads are applied, then
self-equilibrium conditions are

AF0 ¼ 0; ð3Þ

where A∈ℝn f �ne is the structure equilibrium matrix which
contains all element direction cosines (Pellegrino and
Calladine 1986). Denote r the rank of A, then the number of
self-stress states is s = ne – r. From (3), it is clear that F0 must
lie in the null space ofA; thus, F0 can be expressed as a linear
combination of the self-stress states

F0 ¼ Wsβ; ð4Þ

whereWs∈ℝne�s contains the s self-stress states column-wise
(Ws is the basis of the null space of A) (Pellegrino and
Calladine 1986) and β ∈ℝs × 1 is a combination coefficient
vector. In existing prestress optimization methods for
tensegrity structures (Xu and Luo 2010; Wang and Senatore
2020b), the combination coefficient vectorβ is usually treated
as the primary design variable. A suitable combination coef-
ficient β is obtained to satisfy the unilaterality condition on
element forces (struts in compression and cables in tension).
However, (4) can only produce a theoretical solution because
structural parameters such as cross-sectional areas, material
properties, and element lengths are not considered. In practice,
geometric compatibility and imperfections (e.g., lack of fit)
must be considered to apply the required prestress.

Since this work is concerned with the design of adaptive
tensegrity structures that are equipped with linear actuators, it is
convenient to apply prestress directly through actuation. Assume
a given actuator layout; i.e., a certain number of linear actuators
are installed in series with selected elements. The action of a
linear actuator is a length change that, generally,modifies internal

forces ΔF∈ℝne�1 and node displacements Δu∈ℝn f�1
. The ac-

tuator length change is modeled as an inelastic change of length

ΔL∈ℝne�1 of the element ontowhich it is installed.ΔL is added
to the element elastic deformation caused by the change of force

ΔF such that the total element deformation et∈ℝne�1 is

et ¼ eþΔL ð5Þ

where e=GΔF is the elastic deformation and G∈ℝn f �n f
is the

flexibility matrix. The flexibility matrix is diagonal for
pin-jointed structures with entries Li/Eiαi; Li,Ei, andαi are length,
Young modulus, and cross-sectional area of the ith element, re-
spectively. The compatibility condition (Pellegrino andCalladine
1993) given by the orthogonality between self-stress states Ws

and the element total deformation et is

WT
s eþΔLð Þ ¼ 0 ð6Þ

Note that (6) holds for structures whose rigid body motion
is constrained by supports as well as free-standing structures
(Senatore and Reksowardojo 2020). Replacing (4) into (6) and
solving for β gives

β ¼ − WT
sGWs

� �−1
WT

sΔL ð7Þ

Therefore, ΔF can be computed as

ΔF ¼ −Ws WT
sGWs

� �−1
WT

sΔL: ð8Þ

Equation (8) proves that the actuator length changeΔL can
be employed directly to apply the required prestress F0.
Generally, (8) relates the actuator commandΔL to the change
of element forces ΔF that it causes.

An alternative formulation can be derived from force equi-
librium conditions (9) and compatibility between node dis-
placements and element deformation (10)
AΔF ¼ 0 ð9Þ
ATΔu ¼ eþΔL ð10Þ

From constitutive relations, ΔF can be also computed as

ΔF ¼ KL−1e ð11Þ

where K∈ℝn f �n f
and L∈ℝne�1 are diagonal matrices whose

ith diagonal entry is Eiαi and Li, respectively. Then replacing
(10) into (11) gives

ΔF ¼ KL−1 ATΔu−ΔL
� � ð12Þ

Equation (12) is equivalent to (8) and relates ΔL with the
change of element forcesΔF and node displacementsΔu that
it causes. However, (12) reduces nonlinearity compared to (8)

which is a reciprocal function (i.e.,G ¼ K
−1
L ) of the element

cross-sectional area α. The formulation given here to apply
prestress through actuation will be integrated into the embod-
ied energy minimization model including other requirements
such as unilaterality condition on cable element forces as well
as stress and deflection limits under external loading.
Therefore, the adoption of (12) instead of (8) helps to reduce
optimization complexity.

4 Embodied energy minimization

4.1 Objective function

The embodied energy is minimized through a simulta-
neous optimization of element sizing and actuator posi-
tions. Suppose the actuator system is made of na linear
actuators. The objective function comprises two parts:
the energy embodied in ne structure elements and the
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energy embodied in na actuators. The structure embod-
ied energy is

Es
emb ¼ ∑

ne

i¼1
αiLiρie

e
i ; ð13Þ

where αi, Li, ρi, and eei are the cross-sectional area,
length, material density, and energy intensity factor of
the ith element, respectively. In (13), the element
cross-sectional areas α are optimization variables, and
all other terms are constant. The energy intensity factor
eei (MJ/kg) is the energy per unit mass for extraction
and manufacturing (Hammond and Jones 2008).

Following (Senatore et al. 2019), it is assumed that the
mass of an actuator is a linear function of the force capacity,
i.e., the maximum force required for control, with a propor-
tional constant c = 0.1 kg/kN (ENERPAC 2016). Therefore,
the actuation system embodied energy is

Ea
emb ¼ c ∑

ne

i¼1

eFinieai ; ð14Þ

where eFi and eai are force capacity and energy intensity factor

of the ith actuator; ni is the i
th entry of n∈ 0; 1f gne�1 which is a

vector of binary variables for the actuator positions. For clar-
ity, when ni = 1, the ith element is equipped with an actuator.
Since ni = 0 for elements that are not equipped with an actua-

tor, the product of vectors eF∈ℝne�1 by n∈ 0; 1f gne�1 returns
the force capacity of all actuators installed in the structure.

Actuator force capacity eF and actuator positions n are opti-
mization variables. Note that the summation is over all ele-
ments ne instead of the total number of actuators na because
the actuator positions are variables. The total structure embod-
ied energy is given by

Eemb ¼ Es
emb þ Ea

emb: ð15Þ

4.2 Equilibrium and compatibility constraints

Force equilibrium and geometric compatibility constraints for
the prestress state, which are expressed by (9) and (12), are
here grouped together

AΔF0 ¼ 0
ΔF0 ¼ KL−1 ATΔu0−ΔL0

� ��
ð16Þ

whereΔF0 is the prestress applied through the actuator length
change ΔL0 and Δu0 is the corresponding change of node
positions from the input geometry.

When the external load is applied, equilibrium and com-
patibility constraints are expressed as

Κu ¼ P; ð17Þ

where K∈ℝn f �n f
is the structure stiffness matrix, u∈ℝn f �1 is

the displacement vector, and P∈ℝn f �1 is the total external
load vector which here includes the effect of actuation. For a
pin-jointed structure and excluding geometric stiffness contri-
bution, the stiffness matrixK in global coordinates is given by

K ¼ AKL−1AT: ð18Þ

All terms in (18) have been defined in Section 3 includ-

ing the diagonal element stiffness matrix K. Generally,
since tensegrity structures have a geometric nonlinear be-
havior, the stiffness matrix comprises material and geomet-
ric stiffness (Zhang and Makoto 2015; Connelly 2002).
However, since through actuation it is possible to ensure
the cable elements do not slack under the effect of external
loading, it is reasonable to assume that material (linear)
stiffness is dominant and therefore geometric stiffness is
not included in (17).

Since actuation causes a force and a displacement change,
it can be effectively incorporated in the external load. The load
vector P in (17) contains not only the external load Pext but
also the equivalent load caused by actuation

P ¼ Pext þ Pact; ð19Þ
where Pact is denoted as “actuator load.” Pact is computed as

Pact ¼ AKL−1ΔL: ð20Þ

Since the actuators are installed in series with the elements,
ΔL can be thought of as a lack of fit. The change of forces and
displacements caused by the actuator is equivalent to that
caused by an external load parallel to the axis of the corre-
sponding element and applied to its end nodes, which is

expressed by the term AKL−1ΔL.
Equilibrium and compatibility constraints for the noncon-

trolled state under permanent load are

ΚuP ¼ Ppermanent; ð21Þ

FP ¼ KL−1ATuP; ð22Þ
where Ppermanent denotes the permanent load including dead
load (Pdead) and structure self-weight (Pself). In the controlled
state, the actuator length changeΔLP is applied to counteract
the effect of Ppermanent, and thus equilibrium and compatibility
constraints are

ΚuP C ¼ PP; ð23Þ

FP C ¼ KL−1 ATuP C−ΔLP� �
; ð24Þ

where
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PP ¼ Ppermanent þ AKL−1ΔLP: ð25Þ

Note that uP_C and FP_C are controlled displacements and
forces (hence the superscript contains C) that result from the
combined effect of Ppermanent and ΔLP. In other words, uP_C

= uP +ΔuP and FP_C = FP +ΔFP where uP are the node dis-
placements and FP the element forces caused by Ppermanent

while ΔuP is the displacement correction and ΔFP the force
correction caused by ΔLP (see Fig. 4). For clarity, the con-
trolled element force is obtained as the product of the element

stiffnessKL−1 by the element elastic deformation e = et −ΔL
in which et =ATu is the total element deformation. The terms
uP, uP_C, FP, FP_C, andΔLP are optimization variables. Once
a solution is obtained, displacement and force corrections re-
quired under the permanent load are computed as ΔuP =
uP_C-uP and ΔFP = FP_C- FP, respectively.

Similarly, equilibrium and compatibility constraints for the
noncontrolled state under live load Plive are

ΚuL ¼ Plive; ð26Þ
FL ¼ KL−1ATuL: ð27Þ

In the controlled state, the actuator length change ΔLL is
applied to counteract the effect of live load, and thus equilib-
rium and compatibility constraints are

ΚuL C ¼ PL; ð28Þ
FL C ¼ KL−1 ATuL C−ΔLL� �

: ð29Þ

where

PL ¼ Plive þ AKL−1ΔLL: ð30Þ

Controlled displacements uL_C and forcesFL _C result from
the combined effect of Plive andΔLL. The terms uL, uL_C, FL,
FL_C, and ΔLL are optimization variables. Once a solution is
obtained, displacement and force corrections required under
the live load are computed asΔuL = uL_C-uL andΔFL = FL_C-
FL, respectively.

4.3 Ultimate limit state (ULS) constraints

4.3.1 Element stress and buckling constraints

Ultimate limit state (ULS) constraints ensure that all element
forces are controlled within required limits under the worst load-
ing condition in the controlled states (a), (c), and (e) (Section 2.3)

σcαi≤ Fψ
i ≤σ

cαi; if i∈Scable;∀ψ∈ a; c; ef g
σ sαi≤ Fψ

i ≤σ
s
αi; if i∈Sstrut;∀ψ∈ a; c; ef g

−Fb
i ≤ F

ψ
i ; if i∈Sstrut;∀ψ∈ a; c; ef g;

8>>><>>>: ð31Þ

where Scable and Sstrut denote the index set for cable and strut
elements, respectively. For clarity, in state (a), Fψ=ΔF0(ψ = a);
in state (c), Fψ=ΔF0 +FP _C(ψ = c); and in state (e), Fψ =ΔF0

+FP _C +FL _C(ψ = e). Typically, state (e) of phase I adaptation
is the most demanding control condition since the total element
force is the sum of prestress ΔF0, controlled forces under per-
manent load FP _C, and live load FL _C. σc and σc are lower and
upper bound, respectively, for the admissible stress in cable ele-
ments; σs and σs are lower and upper bound, respectively, for the
admissible stress in strut elements. For stable equilibrium, cables
must be in tension under any load condition. The lower boundσc

cannot be smaller than zero, and thus it is set to σc ¼ ζσc where

ζ is a small positive value. Fb∈ℝne�1 is the Euler buckling load
vector for strut elements. To reduce optimization complexity,
strut elements are assumed to have a circular hollow section with
a wall thickness t proportional to the external radius Re, i.e., t
= γRe(γ is constant). It follows that the internal radius isRi=Re(1
− γ). This way, the Euler buckling load for a strut element can be
expressed as a function of its cross-sectional area as

Fb
i ¼

πEα2
i 1þ λ2
� �

4L2i 1−λ2
� � ;∀i∈Sstrut; ð32Þ

where λ = 1 − γ. Element cross-sectional areas are constrained
between a lower (αc

min andα
s
min ) and an upper (α

c
max andα

s
max )

bound to account for feasible construction and commercial
availability

αc
min≤αi≤αc

max; if i∈Scable
αs
min≤αi≤αs

max; if i∈Sstrut
:

�
ð33Þ

4.3.2 Fail-safe constraints

Fail-safe constraints ensure that the structure can take the
worst loading condition without the contribution of the active
system in the noncontrolled states (b), (d), and (f) (Section 2.3)

σcαi≤ Fψ
i ≤σ

cαi; if i∈ Scable; ∀ψ∈ b; d; ff g

σsαi≤ Fψ
i ≤σ

cαi; if i∈ Sstrut; ∀ψ∈ b; d; ff g:

−Fb
i ≤ F

ψ
i ; if i∈ Sstrut; ∀ψ∈ b; d; ff g

8>>>>><>>>>>:
ð34Þ

For clarity, in state (b), Fψ =ΔF0 + FP(ψ = b); in state (d),
Fψ =ΔF0 + FP _C + FL(ψ = d); and in state (d), Fψ =ΔF0 +
FP _C +ΔFL(ψ = f). Typically, state (d) of phase I adaptation
is the most demanding noncontrolled condition since the total
element force is the sum of prestress ΔF0, controlled force
under permanent load FP _C

, and noncontrolled force under
live load FL. Although formally identical, (31) and (34) are
conceptually different. Equation (31) ensures that cables do
not slack and stress and buckling limits are not exceeded dur-
ing control (states (a), (c), (e)). Instead, through (34), cables
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are prevented to slack, and stress and buckling limits are met
without the contribution of the active system (states (b), (d),
(f)). Therefore, the structure load-carrying capacity is not
compromised in case of a power outage and concurrent occur-
rence of a strong loading event.

4.4 Serviceability limit state (SLS) constraints

Deflection constraints are implemented by setting bounds ulimit

on displacements of selected controlled nodes

−ulimit≤uψi ≤u
limit;∀i∈Scdof ;∀ψ∈ c; ef g: ð35Þ

where uψi is the displacement of the ith degree of freedom and
Scdof is a set of indices corresponding to the controlled degrees of
freedom cdof (i.e., controlled nodes). The cdofs are input to the
design process. Depending on the structure layout, cdofs can be
selected so that the structure shape is controlled to meet typical
deflection limits. For clarity, in state (c), uψ =Δu0 + uP _C(ψ =
c) and in state (e) uψ =Δu0 + uP _C + uL _C(ψ = e). Recalling the
adaptation phases defined in Section 2.3, under the action of
permanent load (phase 0), displacements are reduced practically
to zero which is equivalent to the effect of pre-cambering (state
(c)). In this case, ulimit is denotedwith uSLS0which is set to zero or
a very small value depending on requirements. During service,
under the action of the live load (state (e)), ulimit is denoted with
uSLS which is set to typical deflection limits.

4.5 Actuator control command constraints

Constraints for actuator commands are set to avoid large
length changes which might be impractical. Also, since an
actuator is assumed to be installed in series with the element,
the length change is limited to a fraction of the hosting element
length. The actuator length change ΔL is constrained by

−ΔLlimitni≤ΔLψi ≤ΔLlimitni;∀i;∀ψ∈ a; c; ef g; ð36Þ
where ΔLlimit is the prescribed limit and ni is the actuator
position binary variable defined in Section 4.1. When ni = 1,
the ith element is equipped with an actuator and otherwise ni =
0. For clarity, in state (a) ΔLψ =ΔL0; in state (c), ΔLψ

=ΔL0 +ΔLP(ψ = c); and in state (e), ΔLψ =ΔL0 +ΔLP

+ΔLL(ψ = e). Concerning the prestress state, to ensure that
the displacement Δu0 caused by the initial actuator length

ΔL0 is small, the limit for ΔL0, denoted as ΔL0limit, is set to
10% of ΔLlimit. Large variation from the input geometry
caused by prestressing is usually undesired.

Under the permanent load and for the ultimate limit state,
actuator control commands must be identical for load cases
with an identical load factor

ΔLPi ¼ ΔLPj ; if δi ¼ δ j; ð37Þ

where δi denotes the load factor for the permanent load of the
ith load case.

It is generally preferable to operate an adaptive structure
with a low number of actuators to minimize control system
complexity. Equation (38) is employed to limit the total num-
ber of actuators to na which can be assigned depending on
requirements

∑
ne

i
ni≤na: ð38Þ

4.6 Auxiliary constraints

4.6.1 Actuator embodied energy auxiliary constraints

The actuation system embodied energy (14) is assumed to be a

linear function of the actuator force capacity eF (see
Section 4.1). The actuators are assumed to be installed in
series with the elements. Therefore, the actuator force capac-
ity must be equal to or larger than the maximum force that the
element is subjected to, across all load cases. Since the actu-
ator position are not known, an auxiliary constraint must be set
to relate the actuator force capacity with the force of the ele-
ment onto which the actuator will be installed

−eFi≤ Fψ
i ≤ eFi;∀i;∀ψ∈ a; b; c; d; e; ff g; ð39Þ

eFmin≤ eFi≤ eFmax;∀i; ð40Þ
where Fψ

i denotes the ith element force in a particular state as
done in Section 4.3. Equation (39) must be satisfied for all load
cases to ensure that all element forces are within [−eF, eF i]. eFmin

and eFmax are lower and upper bounds, respectively, on the
actuator force capacity which can be set to match commercial
availability.

4.6.2 Load actuation threshold (LAT) auxiliary constraints

Embodied and operational energy minimization problems
are coordinated through an auxiliary variable called load
activation threshold (LAT). LAT is the lowest intensity live

load, denoted as Plive
LAT , that causes a violation of stress and/

or displacement limits during service (Senatore et al. 2019).

That is when the live load is smaller than Plive
LAT , stress and

displacement limits are satisfied entirely through passive
load-bearing capacity; instead, when the live load is larger

than Plive
LAT , active control is needed to meet required limit

states. It is convenient to express LAT in percentage terms

as Plive
LAT ¼ LAT ⋅Plive

d where Plive
d is the maximum expected

live load for the SLS case (i.e., excluding load factors).
Note that stress and buckling limits for the ultimate limit
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state (ULS) are satisfied under all load cases without the
contribution of the active system through (34) (fail-safe
constraints). Therefore, LAT applies only to the serviceabil-
ity limit state (SLS) for deflection limits.

Two auxiliary constraints are added to enforce the condi-
tion that displacement limits are met without the contribution
of the active system for any live load event of intensity smaller

than Plive
LAT

ΚuLLAT ¼ Plive
LAT ; ð41Þ

−uSLS ≤uLi;LAT ≤u
SLS ;∀i∈Scdof ; ð42Þ

where uLLAT is the displacement caused by Plive
LAT which is

added to the optimization variables. Equation (42) keeps cdof
displacements under Plive

LAT within serviceability limits, which
thus ensures that SLS is satisfied without contribution of the
active system for any live load event of intensity smaller than
Plive
LAT .

Table 1 Embodied energy minimization formulation

舃
min
x 舃Eembd ¼ ∑

ne

i¼1
αiLiρie

e
i þ c ∑

ne

i¼1
Finieai

舃Objective function

舃s.t.

舃
AΔF0 ¼ 0
ΔF0 ¼ KL−1 ATΔu0−ΔL0

� � 舃Prestress

舃KuP C
jL ¼ PP

jl
舃∀j, ∀ l 舃Equilibrium constraints

舃KuL C
jL ¼ PL

jl 舃∀j, ∀ l

舃KuPjL ¼ Ppermanent
jl

舃∀j, ∀ l

舃KuLjL ¼ Plive
jl

舃∀j, ∀ l

舃KuLLAT ¼ Plive
LAT

舃FP C
jl ¼ KL−1 ATuP C

jl ΔLP
jl

� �
舃∀j, ∀ l

舃FL C
jl ¼ KL−1 ATuL C

jl ΔLL
jl

� �
舃∀j, ∀ l

舃FP
jl ¼ KL−1ATuPjl 舃∀j, ∀ l

舃FL
jl ¼ KL−1ATuLjl 舃∀j, ∀ l

舃σ cαi≤ FΨ
ijl ≤−c

σ αi 舃∀i ∈ Scable, ∀ j, ∀ l,
∀Ψ∈{a, c, e}

舃Element stress and buckling constraints

舃σ sαi≤ FΨ
ijl ≤−s

σ αi 舃∀i ∈ Sstrut, ∀ j, ∀ l, ∀Ψ∈{a, c, e}

舃−Fb
i ≤ F

Ψ
ijl

舃∀i ∈ Sstrut, ∀ j, ∀ l, ∀Ψ∈{a, c, e}

舃σ cαi≤ FΨ
ijl ≤−c

σ αi 舃∀i ∈ Scable, ∀ j, ∀ l,
∀Ψ∈{b, d, f}

舃Fail-safe constraints

舃σ sαi≤ FΨ
ijl ≤−s

σ αi 舃∀i ∈ Sstrut, ∀ j, ∀ l, ∀Ψ∈{b, d, f}

舃−Fb
i ≤ F

Ψ
ijl

舃∀i ∈ Sstrut, ∀ j, ∀ l, ∀Ψ∈{b, d, f}

舃−Fi≤ FΨ
ijl ≤ Fi 舃∀i, ∀ j, ∀ l, ∀Ψ 舃Auxiliary constraints for actuator embodied energy

舃Fmin ≤ Fi ≤Fmax 舃∀i

舃−uSLSO≤uΨijl ≤uSLSO 舃∀i ∈ Scdof, ∀ j, l = {SLS}, Ψ = c 舃Displacement constraints

舃−uSLS ≤uΨijl ≤uSLS 舃∀i ∈ Scdof, ∀ j, l = {SLS}, Ψ = e

舃−uSLS ≤uLijl;L AT ≤uSLS 舃∀i ∈ Scdof, ∀ j, l = {SLS}

舃−ΔL0limitni≤ΔL
Ψ
i ≤ΔL

0
limitni 舃∀i, Ψ = a 舃Actuator layout constraints

舃−ΔL0limitni≤ΔL
Ψ
ijl ≤ΔLlimitni 舃∀i, ∀ j, ∀ l, ∀Ψ∈(c, e)

舃ΔLPil ¼ ΔLPjl ; if δi ¼ δ j 舃l = {ULS

舃∑ne
i ni≤na

舃ni ∈ {0, 1} 舃∀i

舃αc
min≤αi≤αc

max 舃∀i ∈ Scable 舃Bounds for element cross-section areas
舃αs

min≤αi≤αs
max 舃∀i ∈ Sstrut
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4.7 Embodied energy minimization, full model
formulation (MINLP)

Embodied energy minimization is formulated as a
mixed-integer nonlinear programming problem (MINLP).
Objective function together with all state and auxiliary con-
straints (Sections 4.1 to 4.6) are given in Table 1.

The vector X ¼ α; n; eF;ΔF0
�

;Δu0;ΔL0; FP; FP C; uP

; uP C;ΔLP; FL; FL C; uL; uL C; uLLAT ;ΔLLÞ collates all opti-
mization variables including design and state variables which
are also listed in Table 2. The design variables are element
cross-sectional areas α and the vector of binary variables n
for the actuator positions. The actuator force capacity eF is an
auxiliary variable that is employed to compute the actuation
system embodied energy as explained in Sections 4.1 and 4.6.
The state variables are:

& Prestress state (ΔF0,Δu0,ΔL0) under no external load
& Noncontrolled state (FP, uP) under Ppermanent

& Controlled state (FP _C, uP _C,ΔLP) under Ppermanent

& Noncontrolled state (FL, uL) under Plive

& Controlled state (FL _C, uL _C,ΔLL) under Plive

& Displacement uLLAT under load activation threshold Plive
LAT

Unless otherwise indicated, the indices i, j, l, ψ iterate over
ne structural elements, np load cases,{ULS, SLS} load combi-
nation cases, and {a, b, c, d, e, f} states, respectively. Both
ULS and SLS are considered to ensure that all constraints are
satisfied for the corresponding limit state. Note that

prestress-related terms in Fψ
ijl, u

ψ
ijl, and ΔLψijl do not iterate on

j and l because the prestress state is unique.
For a structure with ne elements and nf free degrees of

freedom that is subjected to np load cases, the total number
of optimization variables is

nvc ¼ ne 9np þ 7ð Þ þ nf 8np þ 3ð Þ
nvb ¼ ne

ð43Þ

where nvc and nvb are the number of continuous and binary
variables, respectively. Force and displacement variables re-
lated to the live load are doubled because USL and SLS are
accounted for. Instead, only an extra vector is added to force
and displacement variables under permanent load for SLS
because all load factors are always set identical. The embodied
energy minimization process is summarized in Table 3.

Given a load activation threshold (LAT), this process
produces an adaptive tensegrity structure which is an opti-
mal configuration in embodied energy cost terms. The set
of indices Sact for the actuator positions are extracted from
n once the solution is obtained. The structure is designed to
resist adequately all loading events of intensity lower than
LAT without the contribution of the active system. For
loading events larger than LAT up to the design load, al-
though stress and buckling limits are satisfied without

Table 3 Embodied energy minimization summary

Embodied energy minimization

Input Structure geometry, element topology, material property, design loads, controlled DOFs, deflection limits, LAT 

Define objective function, (15)

Define constraints, (16) to (42)

Build MINLP model (Table 1)

Solve MINLP model

Output

Embodied energy, element cross-section areas α , actuator positions actS
Prestress state 0 0 0, ,F u L

Non-controlled state ,P PF u and controlled state _ _, ,P C P C PF u L under 
,

permanent
ULS SLSP

Non-controlled state ,L LF u and controlled state _ _, ,L C L C LF u L under 
,

live
ULS SLSP

Displacement 
LAT

Lu under Load Activation Threshold 
LAT

liveP

Table 2 Embodied energy optimization variables

舃Continuous variable

舃V 舃α 舃eF
舃N 舃ne 舃ne

舃V 舃ΔF0 舃Δu0 舃ΔL0

舃N 舃ne 舃nf 舃ne

舃V 舃FP 舃uP 舃FP_C 舃uP_C 舃ΔLP

舃N 舃ne(np+1) 舃nf(np+1) 舃ne(np+1) 舃nf(np+1) 舃ne(np+1)
舃V 舃FL 舃uL 舃FL_C 舃uL_C 舃ΔLL

舃N 舃2nenp 舃2nfnp 舃2nenp 舃2nfnp 舃2nenp

舃V 舃uLLAT
舃N 舃2nfnp

舃Binary variable

舃V 舃n
舃N 舃ne
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contribution of the active system (fail-safe), deflections
must be reduced to satisfy serviceability.

5 Operational energy minimization

Element sizing and actuator layout (α, Sact), as well as
prestress and controlled state under permanent load obtain-
ed through embodied energy minimization, are inputs to the
second phase of the design process which is operational
energy minimization. The actuator commands to control
the structural response under live load for USL and SLS
have already been computed through embodied energy
minimization. In that case, the actuator commands are part
of the state variables which have to be computed to size
adequately both structure and actuator layout. The actuator
commands that are obtained through embodied energy min-
imization are one of the many feasible solutions to control
the structural response under SLS and ULS load cases but
they might not be optimal in operational energy terms. The
objective of operational energy minimization is to compute
actuator commands to control the structure response during
service (SLS) under all loading events larger than LAT
using minimum energy.

5.1 Control through force and shape influence
matrices

Refer to the adaptation phases defined in Section 2.3. When
the live load is applied, the structure is in state (d) which is the
superposition of prestress state, controlled state under perma-
nent load, and noncontrolled state under live load

Fψ ¼ ΔF0 þ FP C þ FL

uψ ¼ Δu0 þ uP C þ uL

�
ψ ¼ d: ð44Þ

Prestress state (ΔF0,Δu0) and controlled state under per-
manent load (FP _C, uP _C) have been obtained through em-
bodied energy minimization and thus are constants at this
stage. The noncontrolled state (FL, uL) under all live load
events that are larger than LAT is obtained through analysis.
In state (d) elements forces satisfy required stress and buckling
limits thanks to the fail-safe constraints (Section 4.3.2).
However, under loading events larger than LAT, displace-
ments must be reduced through shape control to satisfy ser-
viceability. Therefore, in phase I adaptation (from state (c) to
(e)), the actuators perform a change of length (ΔL) so that all
controlled displacements satisfy deflection limits. For statical-
ly indeterminate configurations, a change of shape modifies
the element forces; therefore, ΔL must be obtained ensuring
that stress and buckling limits are satisfied. After a live load
event has occurred, the structure is in state (f)

Fψ ¼ ΔF0 þ FP C þΔFL

uψ ¼ Δu0 þ uP C þΔuL

�
;ψ ¼ f : ð45Þ

In phase II adaptation (from state (e) to (g)), the actuators
perform an identical but opposite change of length (−ΔL) to
control the structure back into the default state (g).

Assuming small deformations, a simple way to compute the
change of element forces ΔF and node displacements Δu
caused by actuator commands ΔL is to employ the force and
shape influence matrices as defined in (Senatore et al. 2019).

ΔF¼S fΔL
Δu¼SuΔL

ð46Þ

Element cross-sectional areas α and actuator positions

Sact are known at this stage. Therefore, force S f ∈ℝne�na

and shape Su∈ℝn f �na influence matrices can be simply
computed by collating column-wise the effect on element
forces and node displacements, respectively, of a unitary
length change of each actuator in turn. Note that for statically
determinate configurations, Sf is always a zero matrix because
the actuator length changes do not affect element forces
(Senatore et al. 2019). Alternative closed-form solutions to
compute force and shape influence matrices are given in
(Reksowardojo and Senatore 2020). Note that since both Sf
and Su contains n

a columns, the actuator length change dimen-

sions must be reduced accordingly, ΔL∈ℝna�1. Using the
force and shape influence matrices allows expressing the con-
trolled element forces FL _C and node displacements uL _C

under the live load as a function of ΔL

FL C ¼ FL þΔFL

uL C ¼ uL þΔuL
; ð47Þ

where ΔFL and ΔuL are given by (46). This way the opera-
tional energy minimization problem simplifies because the
only primary optimization variable is ΔLL.

5.2 Objective function

Following (Senatore et al. 2019), the objective function is the
minimization of the actuator work that is required for structural
adaptation during service. Recalling the live load probability
distribution definition given in Section 2.2 and the adaptation
phases defined in Section 2.3, the work done by the ith actuator
for the kth occurrence of the jth load case Plive

jk is computed as

WI
ijk ¼ Fψ

ijkΔLLijk þ
1

2
ΔFL

ijkΔLLijk ;∀i∈Sact;ψ ¼ d

WII
ijk ¼ Fψ

ijk −ΔLLijk
� �

þ 1

2
−ΔFL

ijk

� �
−ΔLLijk
� �

;∀i∈Sact;ψ ¼ f

8><>: ð48Þ

where W Ið Þ
ijk and W IIð Þ

ijk are the work share done in phase I and

phase II adaptation, Fψ
ijk is the element force before control in
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state (d) and (f) (see (44) and (45)), and ΔFL
ijk is the force

correction caused by the actuator length change ΔLLijk . Note
that for statically determinate configurations, a shape change
through actuation does not cause a change of element forces
and thus ΔFijk is zero (Senatore et al. 2019).

The sign of the objective function depends on the product
between the applied force and the actuator length change. An
actuator does work when it extends (positive ΔLLijk ) under

compression (negative Fψ
ijk or ΔFL

ijk ) and when it contracts

(negative ΔLLijk ) under tension (positive Fψ
ijk or ΔFL

ijk ).

Otherwise, no work is required, and there would be a theoret-
ical gain of energy which is neglected to compute a conserva-
tive estimate of the operational energy. Only when the product

WF
ijk ¼ Fψ

ijkΔLLijk and/orW
ΔF
ijk ¼ 1

2ΔFL
ijkΔLLijk is negative, the

absolute value is added to the operational energy

Wijk ¼
jW F

ijk j; if WF
ijk < 0;WΔF

ijk ≥0
jWΔF

ijk j; if WF
ijk ≥0;W

ΔF
ijk < 0

jW F
ijk j þ jWΔF

ijk j; if W F
ijk < 0;WΔF

ijk < 0

0; if W F
ijk ≥0;W

ΔF
ijk ≥0

;∀i∈Sact;ψ ¼ d:

8>>><>>>: ð49Þ

Equation (49) holds for phase I and phase II work shares,
which for brevity are both denoted with Wijk. Summing the

work for phase I and phase II adaptation, the total operational
energy required for each occurrence of the live load that is
larger than the load activation threshold is

Eop ¼ ∑
i∈Sact

∑
np

j¼1
∑
nd

kLAT

WI
ijk þWII

ijk

� �
Δtjkω

η
; ð50Þ

where np is the number of load cases, ndthe number of bins of
the discretized load probability distribution, and kLAT is the bin
corresponding to LAT. The duration of each loading eventΔtjk
is obtained through scaling the expected structure service life
with the kth occurrence probability for the jth load case. The
terms η and ω are mechanical efficiency and working frequen-
cy of the actuators, respectively. The mechanical efficiency is
specific to the type of actuation technology (Huber et al.
1997). The actuator working frequency is set to the first nat-
ural frequency of the structure which is, generally, a conser-
vative assumption to obtain an upper bound of the operational
energy (Senatore et al. 2019).

5.3 Optimization constraints

State constraints (e.g., element stress and buckling, dis-
placement, and actuator length change limits) are

Table 4 Operational energy minimization formulation
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identical to those formulated for embodied energy min-
imization (see Sections 4.3, 4.4, and 4.5).

To handle the sign-dependent discontinuity of the ob-

jective function ((50)), the terms WF
ijk and WΔF

ijk are

treated as auxiliary variables, and a set of auxiliary con-
straints are added to enforce the sign-dependency con-
dition given in (49) for both adaptation phases

WF Ið Þ
ijk ≤ Fψ

ijkΔLLijk ;ψ ¼ d

W F IIð Þ
ijk ≤ Fψ

ijk −ΔLLijk
� �

;ψ ¼ f

WΔF Ið Þ
ijk ≤

1

2
ΔFL

ijkΔLLijk

WΔF IIð Þ
ijk ≤

1

2
−ΔFL

ijk

� �
−ΔLLijk
� �

WF Ið Þ
ijk ≤0;WF IIð Þ

ijk ≤0
WΔF Ið Þ

ijk ≤0;WΔF IIð Þ
ijk ≤0

;∀i∈Sact:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð51Þ

This way the work done by the ith actuator for the kth occur-
rence of the jth load case Plive

jk can be expressed as a continuous

linear function which is the sum of the auxiliary variables

W Ið Þ
ijk ¼ − WF Ið Þ

ijk þWΔF Ið Þ
ijk

� �
;∀i∈Sact;ψ ¼ d

W IIð Þ
ijk ¼ − WF IIð Þ

ijk þWΔF IIð Þ
ijk

� �
;∀i∈Sact;ψ ¼ f

:

8<: ð52Þ

Note that (52) holds for the set of feasible solutions (ΔLL,
WF(I),WΔF(I),WF(II),WΔF(II)) that satisfy (51) with equality,
which includes the minimum energy solution.

5.4 Operational energy minimization, full model
formulation (NLP)

Operational energy minimization is formulated as a nonlinear
programming problem (NLP). Objective function together with
all state and auxiliary constraints (Sections 5.1 to 5.4) are given
in Table 4. The vector X = (ΔLL,WF(I),WΔF(I),WF(II),
WΔF(II)) collates the primary optimization variable together
with auxiliary variables. All variables are also listed in Table 5.

Unless otherwise indicated, the indices i, j, and k iterates
over na structural elements, np load cases, and all live load
occurrences of intensity larger than LAT (i.e., ∀k > kLAT).
Since the operational energy is computed during service, only
the SLS load combination case is considered. The index ψ
indicates the state that applies for a particular constraint.

Note that among the terms contained in Fψ
ijl, u

ψ
ijl and ΔLψijl,

those related to prestress do not iterate on j and l because the
prestress state is unique while those related to permanent load
do not iterate on k because the probability distribution is de-
fined only for the live load.

The total number of optimization variables is

nvc ¼ 4nanpnk ð53Þ

where nk is the number of live load occurrences of intensity
larger than LAT. WFvariables are doubled to account for
phase I and phase II adaptation, while ΔLL and WΔF are
identical in both phases (see Section 2.3). The operational
energy minimization process is summarized in Table 6.

Table 5 Operational energy optimization variables

舃 Continuous variable

舃V 舃ΔLL
舃WF(I)

舃WF(II)
舃WΔF

舃N 舃nanpnk 舃nanpnk 舃nanpnk 舃nanpnk

Table 6 Operational energy minimization summary

Operational energy minimization

Input

Element cross-section areas α , actuator positions actS
Prestress state 0 0 0, ,F u L

Controlled state _ _, ,P C P C PF u L under permanent
SLSP

Non-controlled state ,L LF u under 
,

live
k SLS LATk kP (through analysis)

Controlled DOFs, deflection limits

Live load occurrence probability distribution

Define function, Eq. (48)

Define constraints, (31), (35), (36) and (51)

Build NLP model (Table 4)

Solve NLP model

Output
Operational energy, controlled state _ _, ,L C L C L

k k kF u L under 
,

live
k SLS LATk kP (for all live load events 

above LAT)

Design of adaptive structures through energy minimization: extension to tensegrity



6 Total energy optimization (TEO)

A flowchart of the total energy minimization process is given
in Fig. 2. Embodied and operational energy minimization
problems are nested within a univariate optimization process
that minimizes the structure total energy—total energy opti-
mization (TEO). The variable of TEO is the load activation
threshold (LAT). Setting LAT to 100% produces stiff and high
embodied energy structures that do not require active compen-
sation of displacements during service. On the contrary, set-
ting LAT to a low value produces low embodied energy
(lightweight) and flexible structures that require active com-
pensation of displacements under low-intensity loading
events, which depending on the frequency of occurrence,
might require high operational energy during service.

A suitable LAT range (discrete values), 0% ≤ LAT ≤ 100%
must be predefined to carry out TEO. For each LAT, embodied
and operational energy minimization is carried out, and then the
minimum total energy configuration is selected as the optimal
solution. This methodology can be applied to obtain minimum
energy adaptive truss as well as adaptive tensegrity configura-
tions. For tensegrity configurations, cable and strut topology
must be defined as part of the input element topology, and the
optimal prestress state is included in the output. The total energy
minimization process can be summarized as shown in Table 7.

The LAT lower bound can be set in reference to the char-
acteristic of the considered load probability distribution. For
example, setting LAT to a loading event of intensity larger

than the mean of the load probability distribution will auto-
matically exclude solutions that require high operational ener-
gy, thereby reducing significantly the solution space. It is in-
tuitively clear that the minimum total energy solution is likely
to be produced when LAT is set to a relatively high value, and
thus the active system is employed against loading events with
a low probability of occurrence. From experience, typically
the optimal LAT is located in the range of (50–100%). Using a
fine-discretized LAT range is likely to produce a better solu-
tion but it might require a significantly longer computation
time. It is convenient to start with a coarse-discretized LAT
range and iteratively intensify the search by setting a
finer-discretized range that is centered on the optimal LAT
obtained in the previous iteration. A good first-guess solution
is usually obtained by discretizing the LAT range (50–100%)
in 10 steps. Assuming the first-guess optimal solution is ob-
tained for LAT = 70%, subdivide further into 10 steps the LAT
range (60–80%), and repeat until convergence.

Table 8 Self-stress state

舃Cables 舃Struts

舃Element type 舃① 舃② 舃③ 舃④ 舃⑤

舃Self-stress 舃1 舃cosϕ 舃-sinϕ 舃-1 舃-cosϕ

Note: ϕ ¼ tan−1 H
L

� �

Table 7 Total energy optimization (TEO) summary

Total Energy Optimization (TEO)

Input A set of LATs in the range {0% ~100%}

For each LAT

Embodied energy minimization (Table 3)

Input: structure geometry, element topology, material property, design loads, controlled 

DOFs, deflection limits, LAT

Output: embodied energy, element cross-section areas, actuator positions, prestress state

(tensegrity), non-controlled and controlled state under permanent and live load (ULS, 

SLS)

Operational energy minimization (Table 6)

Input: element cross-section areas, actuator positions, prestress state (tensegrity), 

controlled state under permanent load, non-controlled state under all live load 

occurrences larger than LAT, controlled DOFs, deflection limits, live load probability 

distribution

Output: operational energy, controlled state under all live load occurrences larger than 

LAT

Compute the structure total energy (embodied + operational)

End

Output
Select minimum energy configuration, optimal prestress (tensegrity), optimal LAT, non-controlled 

and controlled state under all load cases.
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7 Numerical examples

TEO is applied to the design of a tensegrity roof and a
tensegrity high-rise structure. The two structural configura-
tions under consideration have the same topology pattern that
is shown in Fig. 5. Cable and strut elements are represented by
thin and thick lines, respectively. This novel tensegrity con-
figuration was obtained through a topology optimization for-
mulation given in (Xu et al. 2018), and its mechanical prop-
erties have been studied in (Li et al. 2020).

This system is a class 2 tensegrity structure, according to
the definition given in (Skelton and Oliveira 2009). This is a
periodic topology pattern that has one self-stress state and no
mechanism mode. Considering the topology periodicity and
symmetry, elements can be clustered in five groups which are
indicated by labels in Fig. 5. Elements of the same group have
identical self-stress as given in Table 8.

7.1 Parameter settings

Strut elements are assumed to have a circular hollow section and
to be made of structural steel with a Young modulus Es =
185 GPa and an admissible stress σs ¼ 355 MPa. Cable ele-
ments are assumed to be made of high-strength steel strands with
a Youngmodulus Ec = 206 GPa and an admissible stress σc ¼ 1
260 MPa. To maintain a tension state in cable elements under all
load cases, the lower bound for the cable stress constraints in (31)
and (34) is set to a fraction of the admissible stress σc ¼ ζσc

where ζ = 0.05. The minimum external radius for strut elements
is set to 50mm, and thewall thickness is set to 10% of the radius.
The minimum radius for cable elements is set to 5 mm. For
simplicity, all elements and actuators are assumed to be made
entirely of steel with a density of 7800 kg/m3 and an energy
intensity of 36.5 MJ/kg (Hammond and Jones 2008).

Since loading and support conditions are different, the con-
trolled degrees of freedom (cdofs) are assigned separately for
each case study. The maximum number of actuators that can
be assigned is set to na = cdofs + s which is the sum of cdofs
and the degree of static indeterminacy. This is the minimum
number of actuators to control exactly all element forces and
cdof displacements (Senatore and Reksowardojo 2020). To limit
solution space size, the total number of actuators is constrained to

na, i.e.,∑ne
i ni ¼ na instead of∑ne

i ni≤na as given in the embod-
ied energy minimization formulation (Table 1). Actuators are
assumed to be hydraulic with a mechanical efficiency of 0.8

(Huber et al. 1997). Minimum eFmin and maximum eFmax actua-
tor force capacity are set to 0 and 1 × 105 kN, respectively (40).
The structure service life is set to 50 years. The load probability
distribution is discretized with nd = 50 bins.

7.2 Utilization factors

The terms UTmax
c andUTmin

c in (54) denote the maximum and
minimum utilization ratios, respectively, for cable elements.
Fi and σcαi are axial and admissible forces for the ith element,
respectively. If all cable forces are within the admissible stress
limit under all load cases, then 0≤UTmax

c ≤1; if all cable ele-
ments do not slack under any load case, then ζ≤UTmin

c ≤1.

UTmax
c ¼ max

Fi

σ cαi

 !

UTmin
c ¼ min

Fi

σ cαi

 !
8>>>><>>>>: ; i∈Scable ð54Þ

Similarly, the termsUTσ
s andUT

b
s in (55) denote utilization

ratios for strut elements in terms of admissible stress and
buckling, respectively

UTσ
s ¼ max

Fi

σSαi

�����
�����

 !
UTb

s ¼ max
Fi

−Fb
i

� 	
8>>><>>>: ; i∈Sstrut ð55Þ

where Fb
i is the Euler buckling load for the ith strut element

(i ∈ Sstrut). If all strut forces are within admissible stress and
buckling limits under all load cases, then 0≤UTσ

s ≤1 and

UTb
s ≤1.
The term UTSLS in (56) denotes the ratio between the max-

imum displacement among the cdofs and the deflection limit

UTSLS ¼ max
ui
uSLSi

���� ����� 	
; i∈Scdof ð56Þ

where ui and uSLSi are displacement and deflection limit for the
ith cdof, respectively. If the displacements of all controlled
nodes are within deflection limits under all load cases, then
0 ≤UTSLS ≤ 1.

φ

Fig. 5 Structure topology pattern, element groups are indicated by labels
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7.3 Benchmark with passive tensegrity and
equivalent adaptive truss solutions

The adaptive solution obtained through total energy optimiza-
tion (TEO) is benchmarked against a passive solution of iden-
tical geometry and element topology. The passive solutionmust
be adequately sized so that ULS and SLS are satisfied. In ad-
dition, since element forces and node displacements cannot be
actively controlled, prestress must be assigned so that the cables
do not slack under all load cases. The passive solution is ob-
tained using a similar formulation to that given for embodied
energy minimization (Section 4) which is reduced to a contin-
uous nonlinear programming problem (NLP) because the actu-
ator position binary variables are excluded. Optimization vari-
ables for the passive design solution are element cross-sectional
areas, prestress state, forces, and displacements under perma-
nent and live load. The embodied energy minimization formu-
lation for the passive solution is given in Appendix A. The
adaptive tensegrity solution is further benchmarked against
an adaptive truss system of identical geometry and topology
which has been designed through TEO (Section 6). TEO can
be directly applied to truss structures by excluding the pre-
stress state from the variables and the unilaterality condition
on elements forces from the constraints (all truss elements
can take tension and compression).

TEO has been successfully solved using different algo-
rithms. The best solutions for embodied and operational ener-
gy min imiza t ion have been obta ined us ing the
branch-and-bound algorithm and the interior-point algorithm,
respectively, both implemented in Knitro (Nocedal 2006).
Further information regarding the variation of solutions ob-
tained through different algorithms is given in Section 7.7.

7.4 Tensegrity roof configuration

7.4.1 Dimensions and boundary conditions

Figure 6a shows the dimensions, support, and loading condi-
tions of the tensegrity roof structure considered in this example.

The structure has a span of 50m and a depth of 2.5m. Figure 6b
shows the element numbering and controlled nodes which are
indicated by circles. The vertical displacements of the top chord
nodes and the horizontal displacement of the roller support are
controlled for a total of 5 cdofs. The displacement limit for all
cdofs is set to span/500 = 100 mm. The number of actuators is
set to na = 5(cdofs) + 1(s) = 6 (see Section 7.1).

The structure is assumed to be part of a roof system that
supports an out-of-plane cover of 10 m. A dead load of mag-
nitude 0.98 kN/m2 (100 kg/ m2) is applied to the top chord.
Two live loads that result from wind action are considered: an
uplift load (L1) applied to the top chord and a lateral load (L2).
L1 and L2 are distributed loads of magnitude 0.98 kN/m2. All
loads are appropriately lumped at nodes through the tributary
area of the elements. Table 9 gives all design loads and com-
bination cases.

7.4.2 Adaptive vs passive tensegrity

Figure 7a and Fig. 7b compare the optimal adaptive tensegrity
structure (ATS) obtained through TEO (Section 6) and the
passive tensegrity structure (PTS) obtained through the em-
bodied energy minimization method given in Appendix A.

The actuators are represented by thick purple line segments
placed in the middle of the element. The optimal actuator layout
comprises actuators placed on both cables and struts. Element
diameters and cross-sectional areas are indicated by line thick-
ness and color shading variation, respectively. The thicker the

50000 mm

10000 mm

2500 mm

L1

Dead load

L2

(a)

11 1 12
2

13
3 4 14 15 5 6 16 17 7 8

18 19

20 9 21 10 22

(b)

Fig. 6 Tensegrity roof: a dimensions and loading; b element numbering and controlled nodes

Table 9 Summary of load cases, tensegrity roof

舃Load
combination
case

舃Load
factor

舃Permanent load 舃Load
factor

舃Live load

舃LC1 舃1.35 舃Self-weight+dead load 舃1.5 舃–

舃LC2 舃0.9 舃Self-weight+dead load 舃1.5 舃L1=0.98 kN/m2

舃LC3 舃1.35 舃Self-weight+dead load 舃1.5 舃L2=0.98 kN/m2

舃LC4 舃0.9 舃Self-weight+dead load 舃1.5 舃L3=L1+L2
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(a)

(b)

Fig. 7 Optimal solutions: a adaptive tensegrity roof (ATS) and b passive tensegrity roof (PTS)
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Fig. 8 Element cross-sectional
areas: adaptive tensegrity roof
(ATS) vs passive tensegrity roof
(PTS)
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Fig. 9 Element prestress:
adaptive tensegrity roof (ATS) vs
passive tensegrity roof (PTS)
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Fig. 10 Element prestress: a adaptive tensegrity roof (ATS) and b passive tensegrity roof (PTS)
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line, the bigger the diameter, and a darker gray shade indicates a
larger cross-sectional area. The element cross-sectional areas are
also indicated by the bar chart in Fig. 8. All ATS elements have a
smaller cross-sectional area compared to PTS elements. On

average the cross-sectional area of ATS elements is 8.9% smaller
than that of PTS elements.

Figures 9 and 10 show the element prestress through a bar
chart and mapped onto the structure geometry, respectively.
As expected, for both ATS and PTS, cables are in tension
while the struts are in compression, and in both cases, the
prestress state is proportional to the self-stress state (see
Table 8). However, since cable elements can be kept in ten-
sion through active control, the prestress required in ATS is
50.5% smaller than that required in PTS.

Figure 11a shows the plot of embodied, operational, and
total energy as functions of LAT. PTS and ATS are indicated
by a triangle and a circle mark, respectively. ATS is obtained
for a LAT of 88% which is equivalent to a live load of mag-
nitude 0.86 kN/m2 (see Table 9). Structural adaptation is re-
quired for 1.06 × 103 h under LC2 and LC4 while no adapta-
tion is needed under LC3; thus, the total actuation time is
2.12 × 103 h (approximately 3.0 months over a 50-year service
life). The LAT for the passive solution (PTS) is 100% because

100% 88%
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Fig. 11 Adaptive tensegrity roof:
a embodied, operational, and total
energy vs LAT; b energy
comparison adaptive (ATS) vs
passive (PTS) solution

Table 10 Adaptive tensegrity roof, summary of results

舃LAT 舃Mass (kg) 舃Mass
saving

舃Embodied energy
(MJ)

舃Operational energy
(MJ)

舃Energy
saving

舃Actuation time
(hours)

舃Computation time
(seconds)

舃ATS 舃88% 舃1.70×104 舃1.5% 舃6.21×105 舃2.83×104 舃−3.0% 舃2.12×103 舃58

舃PTS 舃100% 舃1.74×104 舃– 舃6.36×105 舃– 舃– 舃– 舃0.21

max

cUT min

cUT σ
sUT b

sUT SLSUT
0.05

1

Before Control

After Control

Fig. 12 Adaptive tensegrity roof: utilization factors before and after
control
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Fig. 13 Adaptive tensegrity roof: a deformed and b controlled shape under LC4
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it is sized so that both ultimate and serviceability limit states
are satisfied under the worst load case.

Figure 11b compares adaptive and passive configurations in
energy cost terms. ATS achieves 1.49%mass savings but no total
energy savings (−3.0%) compared to PTS. Mass and embodied
energy savings account for the actuation system share. ATS actu-
ation systemmass is 6.6% (1.13 × 103 kg) of the total mass (struc-
ture + actuators). The maximum force capacity (2.82 × 103 kN) is
required for the actuator installed at element 8. The largest length
change (−134 mm) is performed by the actuator installed at ele-
ment 8 under LC1 and LC3. Table 10 gives the optimization
metrics for adaptive and passive tensegrity solutions.

Figure 12 shows the utilization factors bar chart
(Section 7.2) for ATS before and after control. Cable elements

do not slack under any load case, i.e., UTmin
c is never smaller

than the set lower bound ζ = 0.05. For both cables and struts,
forces are within admissible limits (UTmax

c , UTσ
s ) and strut

forces are lower than the buckling limit (UTb
s ). As expected,

UTSLS is larger than 1.0 for loading events of intensity larger.
Figure 13 shows ATS deformed shapes before and after

control, respectively, under load case LC4. Before control,
the two middle node displacements of the top chord exceed
deflection limits (100 mm); after control, all node displace-
ments satisfy SLS than LAT and reduces to 1.0 through active
control.

7.4.3 Adaptive tensegrity vs equivalent truss system

TEO is applied to design an equivalent truss structure to
benchmark mass and energy savings of the adaptive tensegrity
solution. Dimensions, element material, topology, loading,
and boundary conditions are identical to the tensegrity roof
structure considered in Section 7.4.1. However, all elements
of the truss system can carry tension and compression. The

optimal passive truss configuration is obtained using the for-
mulation given in Appendix A. The optimal adaptive truss
system (AT) and corresponding passive truss system (PT)
are shown in Fig. 14. Optimization metrics are given in
Table 11.

Comparing Fig. 14 with Fig. 7 shows that the element
cross-sectional distribution of the equivalent truss is sig-
nificantly different from that of the adaptive tensegrity
solution (ATS). AT is obtained for a LAT of 90%, which
leads to a relatively shorter actuation time compared to
ATS. AT actuation system requirements are significantly
lower compared to ATS. AT actuation system mass is
2.2% (0.27 × 103 kg) of the total mass (structure + actu-
ators). The maximum force capacity (0.79 × 103 kN) is
required for the actuator installed at element 8. The larg-
est length change (−95 mm) is performed by the actuator
installed at element 8 under LC1 and LC3. AT has
smaller total energy (4.29 × 105 MJ for AT vs 5.80 ×
105 MJ for ATS), and it achieves higher savings in mass
and energy cost terms (compare Table 11 with Table 10)
compared to ATS. Mass and embodied energy savings
account for the actuation system share. Therefore, for
this configuration, the adaptive tensegrity solution is
not as efficient as the equivalent truss system.

7.5 Tensegrity tower configuration

7.5.1 Dimensions and boundary conditions

Figure 15a shows the dimensions, support, and loading
conditions of the high-rise tensegrity structure considered
in this example. The structure has a height of 50 m and a
width of 5 m. The dashed lines indicate the story floors.
Figure 15b shows the element numbering and the

Table 11 Adaptive truss roof, summary of results

舃LAT 舃Mass
(kg)

舃Mass
saving

舃Embodied energy
(MJ)

舃Operational energy
(MJ)

舃Energy
saving

舃Actuation time
(hours)

舃Computation time
(seconds)

舃AT 舃90% 舃1.20×104 舃7.1% 舃4.29×105 舃1.11×104 舃4.7% 舃1.74×103 舃5.53

舃PT 舃100% 舃1.29×104 舃– 舃4.72×105 舃– 舃– 舃– 舃0.20

Fig. 14 Optimal solutions: a adaptive roof truss (AT) and b passive roof truss (PT)
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controlled nodes which are indicated by circles. The hor-
izontal displacements of all nodes except the supports are
controlled resulting in a total of 14 cdofs. The displace-
ment limit for all cdofs is set to height/500 = 100 mm. The
number of actuators is set to nact = 14(cdofs) + 1(s) = 15
(see Section 7.1).

This structure is assumed to be a multistory building re-
duced to two dimensions. The dead load is set to 2.94 kN/m2

(300 kg/m2) resulting in a linearly distributed load of 29.4 kN/m
applied every 4m for each floor. Two live loads resulting from
wind action are considered. L1 and L2 are horizontally dis-
tributed in opposite directions with a magnitude that varies
with the square root of the height. The live load maximum
magnitude is set to 2.94 kN/m2. All loads are appropriately
lumped at the nodes through the tributary area of the elements.
Table 12 gives all the design loads and combination cases.

7.5.2 Adaptive vs passive tensegrity

Figure 15c and Fig. 15d compare the optimal adaptive
tensegrity structure (ATS) obtained through TEO (Section 6)
and the passive tensegrity structure (PTS) obtained through
the embodied energy minimization method given in
Appendix A. Element diameters and cross-sectional areas
are indicated by line thickness and color shading variation,
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Fig. 15 Tensegrity tower: a dimensions and loading; b element numbering; c adaptive tensegrity tower (ATS); and d passive tensegrity tower (PTS)

Table 12 Summary of load cases, tensegrity tower

舃Load
combination
case

舃Load
factor

舃Permanent load 舃Load
factor

舃Live load

舃LC1 舃1.35 舃self -weight+dead load 舃1.5 舃–

舃LC2 舃1.35 舃self -weight+dead load 舃1.5 舃L1=2.94 kN/m2

舃LC3 舃1.35 舃self -weight+dead load 舃1.5 舃L2=2.94 kN/m2
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respectively. The thicker the line, the bigger the diameter, and
a darker gray shade indicates a larger cross-sectional area. The
element cross-sectional areas are also indicated by the bar
chart in Fig. 16. All ATS elements have a smaller
cross-sectional area compared to PTS elements. On average
the cross-sectional area of ATS elements is 9.7% smaller than
that of PTS elements.

Figures 17 and 18a and b show the element prestress
through a bar chart and mapped onto the structure geometry,
respectively. As expected, for both ATS and PTS, cables are
in tension while the struts are in compression, and in both
cases, the prestress is proportional to the self-stress state (see
Table 8). However, since cable elements can be kept in ten-
sion through active control, the prestress required in ATS is
61.9% smaller than that required in PTS.

Figure 19a shows the plot of embodied, operational, and total
energy as functions of LAT. PTS and ATS are indicated by a
triangle and a circle mark, respectively. ATS is obtained for a
LAT of 88%which is equivalent to a live load of 2.59 kN/m2 (see
Table 12). Structural adaptation is required for 3.19 × 103 h under
LC2 and LC3 (approximately 4.4 months over a 50-year ser-
vice life). The LAT for PTS is 100% because it is sized so that
both ultimate and serviceability limit states are satisfied under
the worst load case.

Figure 19b compares adaptive and passive configurations in
energy cost terms. ATS requires larger total energy (−22.63%)
as well as mass (−16.17%) compared to PTS.Mass and embodied

energy savings account for the actuation system share. ATS actu-
ation system mass is 22.2% (1.86 × 104 kg) of the total mass
(structure + actuators). The maximum force capacity (−1.3 × 104

kN) is required for the actuator installed at element 24. The largest
length change (95 mm) is performed by the actuator installed at
element 21 under all load cases. Table 13 gives the optimization
metrics for adaptive and passive tensegrity solutions.

Figure 20 shows the utilization factors bar chart (Section 7.2)
for ATS before and after control. Cable elements do not slack

under any load case; i.e., UTmin
c is never smaller than the set

lower bound ζ = 0.05. Cable and strut forces are within admissi-
ble limits (UTmax

c , UTσ
s ), and strut forces are lower than the

buckling limit (UTb
s ). As expected,UT

SLS reduces to 1.0 through
active control. Figure 18c and d show the ATS deformed and
controlled shapes, respectively, under load case LC2. Before
control, the topmost node displacements exceed deflection limits
(100 mm); after control, all node displacements satisfy SLS.

7.5.3 Adaptive tensegrity vs equivalent truss system

TEO is applied to design an equivalent truss structure to
benchmark mass and energy savings of the adaptive
tensegrity solution. Dimensions, element material, topolo-
gy, loading, and boundary conditions are identical to the
tensegrity high-rise structure considered in Section 7.5.1.
The optimal passive truss configuration is obtained using
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the formulation given in Appendix A. The optimal adaptive
truss system (AT) and corresponding passive truss system
(PT) are shown in Fig. 21. Optimization metrics are given
in Table 14.

AT is obtained for an LAT of 70%, which results in a larger
actuation time compared to that required by the adaptive
tensegrity solution (ATS). However, AT achieves 30% mass
savings and 18% energy savings compared to PT. AT actuation
system requirements are significantly lower compared to ATS.

AT actuation system mass is 2.0% (0.79 × 103 kg) of the total
mass (structure + actuators). The maximum force capacity
(0.85 × 103 kN) is required for the actuator installed at elements
25 and 26. The largest length change (−19 mm) is performed by
the actuator installed at element 18 under LC2. Mass and em-
bodied energy savings account for the actuation system share. In
addition, AT has smaller total energy compared to ATS (1.43 ×
106 for AT vs 2.37 × 106 for ATS, compare Table 14 with
Table 13). Therefore, similar to the roof structure example, the
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adaptive tensegrity tower is not as efficient as the equivalent truss
system in mass and energy cost terms.

7.6 On energy requirements of adaptive tensegrity
structures

Further investigation has been carried out for the high-rise
structure example to evaluate energy requirements of adaptive
tensegrity compared to equivalent truss systems. Figure 21c
and Fig. 21d show deformed and controlled shapes, respec-
tively, for AT under LC2. Before control, the top four-node
displacements exceed deflection limits, and the deformed
shape has a single curvature. After control, all node displace-
ments are reduced within the required limit; the controlled
shape, in this case, has a double curvature. Comparing Fig.

Table 13 Adaptive tensegrity tower, summary of results

舃LAT 舃Mass (kg) 舃Mass
saving

舃Embodied energy
(MJ)

舃Operational energy
(MJ)

舃Energy
saving

舃Actuation time
(hours)

舃Computation time
(seconds)

舃ATS 舃88% 舃8.36×104 舃−16.2% 舃3.05×106 舃1.70×105 舃−22.6% 舃3.19×103 舃5273.36

舃PTS 舃100% 舃7.20×104 舃– 舃2.63×106 舃– 舃– 舃– 舃0.22

max

cUT min

cUT σ
sUT b

sUT SLSUT
0.05

1

Before Control

After Control

Fig. 20 Adaptive tensegrity tower: utilization factors before and after
control

a b

144mm

c d

100mm

38.6   10× kN38.6   10× kN−

Fig. 21 Optimal solutions: (a)
adaptive truss tower (AT); (b)
passive truss tower (PT); (c) AT
deformed; and (d) controlled
shape under LC2
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21c with d shows that only the shape of the top part of the
structure is controlled while the rest of the shape remains
nearly unchanged. For AT, the control of the top node dis-
placements does not significantly affect the response of the
rest of the truss system, and thus the actuators located in the
lower region are not required to apply large forces. Differently
for ATS, this control strategy is not applicable. As shown in
Fig. 18c and d, deformed and controlled shapes have a single
curvature. The tensegrity structure is a closely coupled sys-
tem, and thus, it is hard to control only selected node dis-
placements without affecting the response in other regions
of the structure. It is not possible to control only the dis-
placements of the top nodes because it will cause some of
the cables to slack.

To avoid large operational energy for control, ATS is obtained
for a higher LAT (90%) compared to AT (70%) which ultimately
results in larger total energy. Figure 22 compares the magnitude
of actuator forces for the adaptive tensegrity solution (ATS) and
the equivalent truss system (AT). The actuators in ATS have to
work against much larger forces compared to the actuators in AT
which results in a larger embodied energy for ATS actuation
system. Referring to Tables 13 and 14, the actuation systemmass
and maximum force capacity required in AT (0.79 × 103 kg,
0.85 × 103 kN) are much lower compared to ATS (1.86 ×
104 kg, −1.3 × 104 kN). Larger element forces require larger
cross-sectional areas, which results in a larger structure embodied
energy andmass (compare Table 13with Table 14). AT structure
mass (4.01 × 104 kg) is approximately half compared to ATS
(8.36 × 104 kg).

If operational energy is not of primary concern, which could
be the case if it is supplied from renewable sources, TEOmeth-
odology can be employed to obtain lightweight and low em-
bodied energy configurations. Table 15 compares the optimal
adaptive tensegrity solution (LAT = 88%) with three other solu-
tions obtained for LAT set to 50%, 20%, and 0%. While total
energy savings worsen because actuation time and thus opera-
tional energy increase significantly, embodied energy and mass
savings increase up to 42.59% as LAT decreases from the opti-
mal value to LAT = 0%. Table 16 compares the optimal adap-
tive truss solution (LAT = 70%) with the other three solutions
obtained for LAT set to 50%, 20%, and 0%. Similarly, while
total energy savings worsen, embodied and mass savings in-
crease up to 73.65% as LAT decreases from the optimal value to
LAT = 0%.

Note that for all configurations, the truss system (AT) per-
forms significantly better than the tensegrity system (ATS) in
mass and energy cost terms, including the passive solution
obtained for LAT = 100% (compare PTS with PT), which
agrees with the findings given in (Nanayakkara et al. 2020).

7.7 On solution quality

Designing adaptive structures through total energy optimization
(TEO, Section 6) involves solving embodied energy minimiza-
tion (Section 4) which is a non-convex mixed-integer nonlinear
problem (MINLP) as well as operational energy minimization
(Section 5) which is a non-convex nonlinear programming
problem (NLP). Embodied and operational energy

Table 14 Adaptive truss tower, summary of results

舃LAT 舃Mass
(kg)

舃Mass
saving

舃Embodied energy
(MJ)

舃Operational energy
(MJ)

舃Energy
saving

舃Actuation time
(hours)

舃Computation time
(seconds)

舃AT 舃70% 舃4.01×104 舃29.2% 舃1.46×106 舃2.39×105 舃17.6% 舃9.85×103 舃2.73

舃PT 舃100% 舃5.66×104 舃– 舃2.07×106 舃– 舃– 舃– 舃0.20
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minimization are nested within an outer optimization process;
thus, this methodology cannot guarantee solution optimality.
However, it was proven numerically that the all-in-one formu-
lation given in (Wang and Senatore 2020a) and the nested
formulation given in (Senatore et al. 2019) produce very similar
solutions in energy cost terms. Since the methodology given in
this work combines the best aspects of the formulations given in
(Senatore et al. 2019; Wang and Senatore 2020a), it is reason-
able to assume the same conclusion holds.

Embodied energy minimization for the adaptive con-
figuration is a non-convex MINLP problem that involves
a large number of variables and constraints. Therefore, it
is generally not possible to obtain a global optimum
within a reasonable computation time. An attempt to ob-
tain a global optimum solution for both configurations
(tensegrity roof and tower) was made using “BARON”
(branch-and-reduce optimization navigator) (Tawarmalani
and Sahinidis 2004) which is regarded as one of the best
solvers for global optimization of non-convex problems
(Mixed Integer Nonlinear Programming Benchmark
(MINLPLIB) n.d.). However, no feasible solution was
obtained within 8-h computation time. Local optimum
solutions have been obtained using other MINLP solvers
such as Knitro (Nocedal 2006), Bonmin (Bonami et al. 2008),
and FilMINT (Abhishek et al. 2006), which, although cannot
guarantee global optimality for non-convexMINLPs, perform
well on large-scale problems (Bussieck and Vigerske 2010).
Table 17 compares the solutions obtained using different
solvers for the roof and tower tensegrity configurations. The
computation time limit has been set to 8 h (28,800 s) for all
solvers. The LAT has been set to 88%, which is the optimal
value obtained through TEO for both roof and tensegrity con-
figurations. The dash symbol “-” indicates that no feasible

solution could be obtained within the prescribed time limit.
The best solutions have been obtained using the
branch-and-bound algorithm implemented in Knitro. All sim-
ulations have been carried out using the solver default settings.

A further benchmark has been carried out to evaluate
the quality of solutions produced by Knitro built-in algo-
r i t hms to so lve MINLP prob l ems , wh ich a r e
branch-and-bound (BNB), hybrid Quesada-Grossman
(HQG), and mixed-integer sequential quadratic program-
ming (MISQP). Table 18 compares the solutions obtain-
ed with these methods. Each algorithm has been tested
five times. All simulations have been carried out using
the solver default settings. The computation time given
in the table is the average value among all tests.
Knitro-BNB algorithm produces the best solution within
the shortest computation time for both configurations.

Operational energy minimization for the adaptive configu-
ration and embodied energy minimization for the passive con-
figuration are non-convex NLP problems that have been
solved using the interior-point method (IPM) implemented
in Knitro. Generally, IPMs cannot guarantee the global opti-
mality of a non-convex NLP problem. To evaluate solution
quality, operational energy minimization solutions produced
by Knitro-IPM have been benchmarked with solutions obtain-
ed through multiple-starting-point search (Knitro-IPM with
multi-start option) and NLP-global-solver BARON. All sim-
ulations have been carried out using the solver default settings.
Solution optimization metrics are given in Table 19. All algo-
rithms have produced an identical solution. The computation
time required by Knitro-IPM (multi-start) and BARON is sig-
nificantly larger compared to Knitro-IPM, thus showing that
for this NLP problem, Knitro-IPM is an efficient method to
produce high-quality solutions.

Table 15 Adaptive tensegrity tower obtained for different LATs, summary of results

舃LAT 舃Mass (kg) 舃Mass saving 舃Embodied energy (MJ) 舃Operational energy (MJ) 舃Energy saving 舃Actuation time (h) 舃Computation time (s)

舃ATS 舃0% 舃4.130×104 舃42.59% 舃1.507×106 舃3.81×107 舃−1408% 舃7.22×104 舃978.70

舃20% 舃4.133×104 舃42.55% 舃1.508×106 舃3.80×107 舃−1404% 舃7.22×104 舃12,599.25

舃50% 舃5.661×104 舃21.24% 舃2.066×106 舃4.90×106 舃−186% 舃2.21×104 舃1183.93

舃88% 舃8.357×104 舃−16.17% 舃3.050×106 舃1.70×105 舃−22.6% 舃3.19×103 舃5273.36

舃PTS 舃100% 舃7.194×104 舃– 舃2.626×106 舃– 舃– 舃– 舃0.21

Table 16 Adaptive truss tower obtained for different LATs, summary of results

舃LAT 舃Mass (kg) 舃Mass saving 舃Embodied energy (MJ) 舃Operational energy (MJ) 舃Energy saving 舃Actuation time (h) 舃Computation time (s)

舃AS 舃0% 舃1.492×104 舃73.65% 舃0.544×106 舃1.02×107 舃−419.13% 舃7.22×104 舃702.12

舃20% 舃1.494×104 舃73.60% 舃0.545×106 舃9.38×106 舃−380.60% 舃6.58×104 舃879.96

舃50% 舃2.855×104 舃49.57% 舃1.042×106 舃1.24×106 舃−10.22% 舃2.21×104 舃1.57

舃70% 舃4.007×104 舃29.22% 舃1.463×106 舃2.39×105 舃17.64% 舃9.85×103 舃2.73

舃PS 舃100% 舃5.661×104 舃– 舃2.066×106 舃– 舃– 舃– 舃0.20
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8 Discussion

Total energy optimization (TEO) has been formulated to en-
able the design of minimum energy configurations whether
tensegrity or truss systems (Section 6). However, if minimum
weight is the primary design objective, TEO can be employed
to obtain least-weight solutions by ignoring the operational
energy term. Given a fixed number of actuators, minimum
weight solutions are obtained for LAT= 0% (see Tables 15
and 16). That being said, as the LAT decreases from 100 to

0%, the adaptive configuration requires active compensation
of displacements under low-intensity and thus more frequent
loading events. For this reason, consideration of fatigue be-
comes important. Future work could look into extending TEO
by adding a fatigue limit state to the optimization constraints.

In the numerical examples presented in this paper, the total
number of actuators has been predetermined and kept constant
during optimization to reduce the solution space size (see
Section 7.1). However, the embodied energy minimization
formulation (Table 1) allows treating not only the position
but also the number of actuators as a variable. Future work
could investigate in greater detail the relation between LAT
and the optimal number of actuators with regard to mass and
energy savings.

TEO can be applied to design adaptive tensegrity structures
that do not contain mechanisms, i.e., kinematically determi-
nate systems. For practical applications, it might be preferable
to avoid kinematic indeterminacy since, generally, it offers no
benefits with regard to stiffness and stability of the structure.
As remarked by Calladine (Calladine 1978): “On the other
hand, if the aim is to design economical but stiff engineering
structures it is not clear that there is much point in making the
outer network so sparse that the resulting frame has a number
of infinitesimal modes whose stiffness is necessarily low.” For
example, the deployable pedestrian bridge studied in (Veuve
et al. 2015), Georgia Dome (Levy 1994), and Kurilpa Bridge
(Beck 2012) are all kinematically determinate tensegrity sys-
tems. That being said, for the sake of generality, future work
could extend TEO to adaptive kinematically indeterminate
systems by incorporating a prestress design process that en-
ables stabilization of first-order infinitesimal mechanisms
such as that given in (Wang and Senatore 2020b).

TEO has been formulated with the assumption of small
deformations. In this context, the global stability of a ki-
nematically determinate tensegrity structure is ensured
through the force unilateral condition on cable elements
which are kept in tension under all loading events with
and without contribution of the active system. Future
work could extend TEO to include geometric nonlinear

Table 17 Embodied energy
minimization (MINLP) solutions
by Baron, Knitro, Bonmin, and
FilMINT

舃Embodied energy minimization (MINLP) 舃Solver 舃Objective function Eemb(MJ) 舃Computation time (s)

舃Tensegrity roof 舃BARON 舃– 舃–

舃Knitro 舃6.21×105 舃48.55

舃Bonmin 舃6.21 ×105 舃2947.49

舃FilMINT 舃7.49×105 舃63.61

舃Tensegrity tower 舃BARON 舃– 舃–

舃Knitro 舃3.05×106 舃4953.72

舃Bonmin 舃– 舃–

舃FilMINT 舃– 舃–

Table 18 Embodied energyminimization (MINLP) solutions byKnitro
MINLP solvers

舃Embodied energy
minimization
(MINLP)

舃Algorithm 舃Objective
function
Eemb(MJ)

舃Computation
time (s)

舃Tensegrity roof 舃Knitro-BNB 舃6.21×105 舃48.55

舃Knitro-HQG 舃6.26×105 舃113.27

舃Knitro-MISQP 舃– 舃–

舃Tensegrity tower 舃Knitro-BNB 舃3.05×106 舃4953.72

舃Knitro-HQG 舃– 舃–

舃Knitro-MISQP 舃– 舃–

Table 19 Operational energy minimization (NLP) solutions by Knitro-
IPM, Knitro multi-start, and Baron

舃Operational
energy
minimization
(NLP)

舃Solver 舃Objective
function
Eop(MJ)

舃Computation
time (s)

舃Tensegrity roof 舃Knitro-IPM 舃2.83×104 舃0.038

舃Knitro-IPM (multi-start) 舃2.83×104 舃8.25

舃BARON 舃2.83×104 舃0.37

舃Tensegrity tower 舃Knitro-IPM 舃1.70×105 舃0.095

舃Knitro-IPM (multi-start) 舃1.70×105 舃29.13

舃BARON 舃1.70×105 舃35.50
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effects such as large displacements and load direction de-
pendency with deformations.

9 Conclusions

This paper has presented a new methodology to design
adaptive truss as well as tensegrity structures through
total energy optimization (TEO). TEO has been applied
to design a roof and a high-rise adaptive tensegrity
structure. Benchmark studies have shown that truss sys-
tems perform significantly better than tensegrity systems
in mass and energy cost terms, whether they are adap-
tive or passive solutions. Compared to adaptive truss
solutions, adaptive tensegrity structures require a larger
embodied and operational energy to carry larger forces
and to maintain stable equilibrium (i.e., cable elements
do not slack and must carry a tension or, at the limit, a
zero force). This result is significant, and this is the first
paper that has presented it so far. Prior to this work,
there was no quantitative study to assess the mass and

energy requirements of an adaptive tensegrity structure
compared to equivalent passive solutions. Future work
could look into applying TEO to other tensegrity con-
figurations to generalize this conclusion.

The effect of structural adaptation has been rigorously in-
vestigated by comparing adaptive and passive tensegrity solu-
tions (see Section 7.3). If operational energy is not of primary
concern, which could be the case if energy is supplied from
renewable resources, TEO produces minimum weight and
low embodied energy adaptive tensegrity structures that out-
perform passive tensegrity structures. This result generalizes
conclusions reached in previous work (Senatore et al. 2019;
2018a) to tensegrity systems, thus contributing to extend the
domain of application of adaptive structures. The ability to
control deflections is particularly beneficial to tensegrity sys-
tems which are generally comparatively flexible compared to
trusses and frames. In addition, since cable elements can be
kept in tension through active control, adaptive tensegrity
structures require a much lower prestress (up to 60% lower
for the case studies presented in this work) compared to pas-
sive tensegrity structures, which reduces construction costs.

Table 20 Embodied energy minimization formulation for passive tensegrity and truss structures
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Future work could look into extending the TEO formula-
tion to include geometry and topology optimization which
might lead to new types of load-bearing adaptive structures
and the discovery of as-yet-unknown lower bound
configurations.
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Appendix

Embodied energy minimization formulation for a passive
tensegrity as well as a passive truss configuration is given in
Table 20. This formulation applies directly to truss structures
by removing the prestress state from the variables and the
unilaterality condition on element forces from the constraints.
The vector X = (α,β,ΔF0,FP,uP,FL, uL) collates all optimiza-
tion variables. Objective function and all constraint equations
have been described in Sections 4 and 5. Unless otherwise indi-
cated, the indices i, j, and l iterate over ne structural elements, np

load cases, and the load combination cases {ULS, SLS}.

Glossary

A∈ℝn f �ne equilibrium matrix
c ratio of actuator mass to actuator force

capacity
cdof controlled degree of freedom
e∈ℝne element elastic length change
ea actuator material energy intensity factor
ee element material energy intensity factor
et∈ℝne element total length change
E Young modulus
Ea
emb actuator system embodied energy

Es
emb structure embodied energy (i.e., without

actuators)
Eemb structure total embodied energy (i.e., with

actuators)
Eop operational energy
F∈ℝne element forces

Fb∈ℝne Euler buckling load
FL∈ℝne element forces caused by live load
FL C∈ℝne controlled element forces under live load

FL _C = FL +ΔFL

FP∈ℝne element forces caused by permanent load
FP C∈ℝne controlled element forces under permanent

load FP _C = FP +ΔFP

Fψ∈ℝne element forces in state ψeF∈ℝne actuator force capacityeFmin lower bound for actuator force capacityeFmax upper bound for actuator force capacity
G∈ℝn f �n f

element flexibility matrix
Κ∈ℝn f �n f

stiffness matrix
LAT load activation threshold
L∈ℝne element length
n∈ 0; 1f gne�1 binary variable vector for actuator positions
na number of actuators
nc number of supports
nd number of samples in the load probability

distribution
ne number of structural elements
nf number of free degrees of freedom
nn number of nodes (joints)
nk number of live load occurrences of intensity

larger than LAT
np number of load cases
P∈ℝn f

total load containing external and actuator
load P = Pext + Pact

Pact∈ℝn f
equivalent load caused by actuation
(actuator load)

Pext∈ℝn f
external load

PL∈ℝn f
total loading (including actuator load) for
live load case

Plive∈ℝn f
live load

PP∈ℝn f
total loading (including actuator load) for
permanent load case

Ppermanent∈ℝn f
permanent load

Re external radius of element cross section
Ri internal radius of element cross section
s number of self-stress states (i.e., degree of

static indeterminacy)
SD standard deviation of normal probability

distribution
Sact index set for actuator positions (extracted

from n∈ 0; 1f gne�1 )
Scable index set for strut elements
Sstrut index set for cable elements
Sf force influence matrix
Su shape influence matrix
Scdof index set for controlled degrees of freedom
t element cross-section thickness
uL∈ℝn f

node displacements caused by live load
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uL C∈ℝn f
controlled node displacements under live
load uL_C = uL +ΔuL

uP∈ℝn f
node displacements caused by permanent
load

uP C∈ℝn f
controlled node displacements under
permanent load uP_C = uP +ΔuP

uψ∈ℝne node displacements in state ψ
uSLS0∈ℝn f

serviceability limit (deflection) under per-
manent load

uSLS∈ℝn f
serviceability limit under live load

W∈ℝna total work done by actuators
WF∈ℝna actuator work share under compatible force

F (before shape control)
WΔF∈ℝna actuator work share for force correctionΔF

(statically indeterminate configurations)
Ws∈ℝne�s self-stress state matrix.
α∈ℝne element cross-section area.
αc
min lower bound for cable cross-sectional area.

αs
min lower bound for strut cross-sectional area

αc
max upper bound for cable cross-sectional area

αs
max upper bound for strut cross-sectional area

β ∈ℝs combination factor for self-stress states
γ ratio of cross-section thickness to external

radius
ΔF0∈ℝne prestress applied through actuator

commands ΔL0

ΔFL∈ℝne force correction under live load applied
through ΔLL

ΔFP∈ℝne force correction under permanent load
applied through ΔLP

ΔL0∈ℝne actuator commands to apply prestress ΔF0

ΔL∈ℝne actuator commands (i.e., control
commands)

ΔLP∈ℝne actuator commands under permanent load
ΔLL∈ℝne actuator commands under live load
ΔLψ∈ℝne actuator commands required in in state ψ
ΔLlimit maximum actuator length change
ΔuL∈ℝn f

displacement correction under live load
applied throughΔLP.

ΔuP∈ℝn f
displacement correction under permanent
load applied throughΔLP

Δt duration of loading event in hours
ζ proportional constant for cable admissible

stress lower bound
η actuator mechanical efficiency
μ mean of normal probability distribution
ρ material density
σc cable admissible stress lower bound
σc cable admissible stress upper bound
σs strut admissible stress lower bound
σs strut admissible stress upper bound
ω actuator working frequency
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need to obtain permission directly from the copyright holder. To view a
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