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Abstract: Adaptive structures can modify their geometry and internal forces through sensing and mechanical actuation in order to maintain
optimal performance under changing actions. Previous work has shown that well-conceived adaptive design strategies achieve substantial
whole-life energy savings compared with traditional passive designs. The whole-life energy comprises an embodied part in the material and
an operational part for structural adaptation. Structural adaptation through controlled large shape changes allows a significant stress redis-
tribution so that the design is not governed by extreme loads with long return periods. This way, material utilization is maximized, and thus
embodied energy is reduced. This paper presents a new design process for adaptive structures based on geometry and member sizing opti-
mization in combination with actuator placement optimization. This method consists of two parts: (1) geometry and sizing optimization
through sequential quadratic programming is carried out to obtain shapes that are optimal for each load case; and (2) a formulation based
on stochastic search and the nonlinear force method (NFM) is employed to obtain an optimal actuator layout and commands to control the
structure into the target shapes obtained from Part 1. A case study of a planar statically indeterminate truss is presented. Numerical results
show that 17% and 37% embodied energy savings are achieved with respect to an identical active structure designed to adapt through small
shape changes and to a weight-optimized passive structure, respectively. The combinatorial task of optimal actuator placement is carried out
efficiently. The method formulated in this work produces actuator layouts that enable accurate geometric nonlinear shape control under quasi-
static loading through a low number of actuators compared to the number of members of the structure. DOI: 10.1061/(ASCE)ST.1943-
541X.0002604. © 2020 American Society of Civil Engineers.
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Introduction

The construction industry is a major contributor to the global
energy demand (EEA 2010) and a major consumer of mined raw
materials (Straube 2006). For this reason, it is becoming important
to design and construct structures taking into account energy and
material efficiency throughout their life cycle. Civil structures are
generally designed to meet strength and deformation requirements
under worst load case combinations, including long-return-period
events such as earthquakes and strong winds. As a result, the ma-
jority of civil structures are overdesigned for most of their service
life. Previous work (Senatore et al. 2019) has shown that adaptation
to loading is a potential solution to substantially reduce structures
energetic impacts. Adaptive structures are equipped with sensors
and actuators to control the internal forces and external geometry

in order to achieve optimal performance in response to loads. The
ability to adapt to changing loads enables a structure to operate
closer to design limits during service.

Extensive studies have been made in active vibration control
(Soong and Cimellaro 2009; Soong 1988). One of the first full-
scale implementations was tested in the late 1980s in Japan on
a prototype building (Reinhorn et al. 1993) and on a fully operating
commercial building (Kobori and Kamagata 1991). In both imple-
mentations, active control was successfully implemented to com-
pensate for excessive vibrations caused by ground motion and
strong winds. However, adoption of adaptive designs has been slow
due to control system reliability and robustness issues (Spencer and
Nagarajaiah 2003), as well as to a high initial cost. As extreme ex-
citations typically have long return periods, the uncertainty related
to long-term reliability of control systems poses a risk (Shea et al.
2002; Nakajima et al. 2012). However, if structural adaptation is
employed to meet serviceability requirements, long-term reliability
of sensors and actuators are of less concern than when primary con-
trol objectives are associated with ultimate limit state requirements
(Shea et al. 2002; Connor 2002).

Sobek and Teuffel (2001) and Teuffel (2004) showed that force
and shape control can be employed to homogenize the stress in pin-
jointed structures such that the effect of external loading is reduced.
This way it was possible to achieve substantial material mass sav-
ings compared to a passive design. However, such savings were
achieved at a cost of energy required to operate the adaptive system.
Senatore et al. (2011, 2019) formulated a new integrated structure-
control method to synthesize adaptive structures through minimi-
zation of the whole-life energy, which comprises a part embodied
in the material and an operational part for adaptation. If actuation
is only employed against rarely occurring loads, a substantial
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reduction of material embodied energy can be achieved at a small
cost of operational energy (Senatore et al. 2019). Numerical simu-
lations (Senatore et al. 2018a, b) and experimental testing (Senatore
et al. 2018c) showed that energy savings up to 70% can be gained
by adaptive designs for slender configurations including tall build-
ings, bridges, and self-supporting roof systems of complex layout.
The formulation given by Senatore et al. (2019) is based on the
assumption of small deformations, and thus control is limited to
small shape changes.

Large geometric reconfigurations have been achieved by deploy-
able structures whose motion is based on component mechanisms
with defined kinematics (e.g., scissor systems) (Pellegrino 2001).
Deployable structures have been applied in civil engineering mostly
as large-scale retractable roof systems (Gantes et al. 1989; Akgün
et al. 2011). However, these structures usually cannot bear loads until
the deployed state is reached. Shape control of load-bearing tensegr-
ity structures has been investigated (Rhode-Barbarigos et al. 2012;
Adam and Smith 2008). Due to the usually complex kinematics of
tensegrity structures that causes geometric nonlinearity, adaptation
and deployment were implemented combining physics-based mod-
els with machine learning and stochastic optimization (Veuve et al.
2015; Sychterz and Smith 2018).

Shape optimization has been subject of extensive research.
Depending on the external load, it was shown that optimal shapes
resemble arches (Wang et al. 2002; Querin 1997), catenaries, and
lenticular configurations (Gil and Andreu 2001). Geometry optimi-
zation of a simply supported planar truss under uniformly distributed
load was shown to be 70% lighter than the initial flat configuration of
constant depth (Gil and Andreu 2001; Wang et al. 2002). In Pedersen
and Nielsen (2003), a spatial truss of variable depth was further im-
proved through shape optimization. Although the optimal solution
retained the features of the initial shape, small adjustments of the
truss depth resulted in 35% mass savings with respect to the initial
configuration. Existing geometry optimization techniques aim to
obtain one efficient shape that is a best fit under multiple load cases.
Instead, if the structure adapts to loading by a change of geometry,
there could be as many optimal shapes as the design loads are and
thus structural efficiency could be improved.

Designing an actuation system for structural control is a twofold
task (Soong and Cimellaro 2009): (1) obtain appropriate commands
to control the structure; and (2) obtain an optimal actuator place-
ment that allows to control the structure with minimum effort. In-
tegrated structure-control design can produce an optimal actuator
placement to minimize control effort (Soong and Manolis 1987;
Skelton and Sultan 1997). For a reticular structure, optimal actuator
placement is of a combinatorial nature because it involves placing
actuators within a set of available locations (i.e., the structural el-
ements). This makes integrated design of structure–control system
a challenging task.

In the context of vibration control, integrated designs have been
achieved through minimizing control effort or other cost functions
(e.g., the linear-quadratic regulator). Simultaneous optimization of
structural parameters and control, including the actuator placement,
has been implemented using stochastic optimization aided by ad
hoc heuristics (Manning 1991; Begg and Liu 2000), resulting in
efficient designs albeit only exploring a fraction of a large solution
domain. In Korkmaz et al. (2012), shape control of a tensegrity
structure was investigated. Actuator placement was implemented
through a multiobjective optimization for damage tolerance sub-
ject to strength and serviceability requirements. The dynamic re-
laxation (DR) method was employed to predict shape changes
given a set of actuator commands. DR is an efficient method to
handle geometric nonlinearity (Sauve 1995; Senatore and Piker
2015). However, DR does not offer an efficient formulation to

solve the inverse problem, which is to the obtain control com-
mands given a target shape.

In Senatore et al. (2019), the actuator locations were determined
through a measure of efficacy that evaluates the contribution of
a structural element toward the required force and shape control.
Deformations caused by initial imperfections (eigenstrain) were in-
terpreted to be caused by actuator length changes. This idea made it
possible to formulate a computationally efficient routine based on
the integrated force method (IFM) (Patnaik et al. 2004) to obtain
optimal actuator layouts for structures that adapt to loads through
small shape changes (small deformation assumption). Yuan et al.
(2016) presented a formulation called nonlinear force method,
which was employed to obtain suitable actuation commands to con-
trol large shape changes. Computation of actuator commands was
formulated as an iterative processs, which generally requires a low
number of iterations to achieve convergence. However, in Yuan
et al. (2016) no process was formulated to obtain the actuator place-
ment, which was determined a priori.

Outline

This paper presents a new method to design adaptive structures
capable of large and reversible shape changes achieved through ac-
tuation. This work extends the formulation given in Senatore et al.
(2019) in that the structure is designed to adapt to loads through large
shape changes, i.e., small strains but large displacements assumption.
Shape adaptation does not rely on mechanisms with defined kin-
ematics (e.g., scissor systems). In the event of a strong loading event,
a change of shape takes place to homogenize stresses thus minimiz-
ing the maximum stress governing the design. Because large shape
changes induce geometrical nonlinearity, this work is not based on a
small deformation assumption. A set of target shapes that counteract
the effect of peak loads are first obtained through geometry and
sizing optimization. A method is formulated to obtain a suitable ac-
tuator layout in order to control the structure into the target shapes.
This method is a combination of stochastic search and a nonlinear
force method (Yuan et al. 2016) in a nested optimization scheme.

An application of this design process on a planar truss is pre-
sented. The solution produced by this process is benchmarked
against an adaptive structure limited to small shape changes ob-
tained using the formulation given by Senatore et al. (2019) and
a weight-optimized passive structure of identical topology.

Design Method

The design method presented in this paper is implemented for
reticular structures. The active elements are assumed to be linear
actuators that are fitted within some of the structure elements. The
design method consists of two parts:
1. Optimization of the geometry and internal forces for each load

case as well as optimization of the element cross-sectional areas
in order to minimize the structure embodied energy.

2. Optimal actuator placement to control the structure into the
target optimal shapes obtained in Part 1.
Fig. 1 shows a flowchart of the design process.

Shape and Internal Load-Path Optimization

The structure is designed to have an optimal shape and internal
load-path against each load case. This process, denoted by χ, is
a mapping between external load p and target shapes dt as well
as internal forces ft (the superscript t stands for target) that are op-
timized to maximize material utilization

© ASCE 04020068-2 J. Struct. Eng.
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χ∶pj → ðftj;dt
jÞ ∀ j ¼ 0; 1; : : : ; np;

pj ↦ ftjðpjÞ;
pj ↦ dt

jðpjÞ ð1Þ

Internal load-path and internal forces have the same meaning
in this paper. The main inputs are the structural topology, i.e., a set
of nn nodes connected by ne elements in two or three-dimensions
and support conditions. Because the structure is reticular, there
are nd ¼ nn · dim degrees of freedom (DOF), where dim is either
2 or 3. The controlled degrees of freedom are those allowed to vary
during shape optimization and will be controlled through actuation.
The initial shape of the structure (i.e., initial node coordinates) is
defined as dinput ∈ Rnd . The design variables are the element cross-
sectional areas α ∈ Rne , internal forces f ∈ R2·ne , and nodal posi-
tions dt ∈ Rnd

x¼ ½α f0 · · · fj · · · fnp dt
0 · · · dt

j · · · dt
np �T ð2Þ

where index i refers to the ith element; j refers to the jth load case;
and np is the total number of load cases. There are np vectors of
nodal positions dt and internal forces f, to be achieved through con-
trol. There is only one vector of element cross-sectional areas α,
which remains constant during control. The superscript or subscript

0 indicates the case where only permanent load is applied (i.e., no
live load).

Following the simultaneous analysis and design approach
(SAND), the internal forces are treated as variables by adding extra
equality constraints to enforce equilibrium, therefore avoiding a di-
rect matrix inversion (Haftka 1985).The internal forces fj include
two vectors

fj ¼ ½ ftj f0j �T ð3Þ

where ftj = forces in equilibrium with the external load through a
shape change dt

j; and f0j = forces in equilibrium with the external
load without shape control and computed on dt

0 the optimal shape
under permanent load only.

The structure is assumed to be built with shape dt
0 because it is

the most efficient geometry in the absence of live load. Including
the forces f0j within the design variables produces structures that are
fail-safe without the contribution of the active system. In the event
of control system failure or power outage and simultaneous occur-
rence of the worst load case, load-carrying capacity is not exceeded.

The objective of this part of the design process is minimization
of the energy embodied in the material for extraction and manufac-
turing subject to force equilibrium and ultimate limit state (ULS)
constraints. The formulation is given as follows:

Fig. 1. Design method flowchart.
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min
x

Xne
i¼1

giαili0ρi; s:t: ð4Þ

Ajftj ¼ pj ð5Þ
�

A0

ðWsÞTG

�
f0j ¼

(
p0
j

0

)
ð6Þ

ftij ≤ σþ
i αi; ftij ≥ max

�
σ−
i αi;−π2EIi

l2ij

�
ð7Þ

f0ij ≤ σþ
i αi; f0ij ≥ max

�
σ−
i αi;−π2EIi

l2i0

�
ð8Þ

dl ≤ dt ≤ du ð9Þ

αl ≤ α ð10Þ

The objective function in Eq. (4) is the embodied energy where
gi is the material energy intensity (Hammond and Jones 2008),
αi the cross-sectional area and ρi the material density of the ith
element. The term lij is the length of the ith element for the jth load
case.

In Eq. (5) Aj ∈ Rnd×ne , fj and pj are the equilibrium matrix,
internal forces, and external load for the jth load case. The equi-
librium matrix A is a concatenation of direction cosine vectors θi,
i.e., the cosines of the angles made by the ith element with respect
to the global coordinate axes

A ¼ ½ θ1 · · · θi · · · θne � ð11Þ
where the direction cosine vector for the ith element is

θi ¼
ffiffiffi
2

p

kCidtk2
Cidt ð12Þ

Ci ∈ Rnd×nd = connectivity matrix of the ith element, which con-
tains all zero entries except for the rows corresponding to the de-
grees of freedom of the ith element ends, which are set to 1 and −1
(Descamps 2014; Achtziger 2007). Because large shape changes
are considered, the equilibrium matrix Aj and the element length
lij depend on of the nodal positions dt

j. Note that for clarity the
function notation is omitted, e.g., Aj instead of Ajðdt

jÞ.
In Eq. (6), G ∈ Rne×ne and Ws ∈ Rne×r are the element flexi-

bility matrix and the null space of A0 computed for dt
0, i.e., the

target shape under permanent load only. The rows of Ws are the
r states of self-stress, where r is the degree of static indeterminacy
[see section “Computation of Control Commands Given Target
Internal Forces and Shape (ϕ−1)”]. The p0

j is the external load con-
sidered in the fail-safe measure for the jth load case. Eq. (6) is the
governing equation of the integrated force method (Patnaik et al.
2004). A detailed formulation of the IFM for design and optimi-
zation of adaptive structures is given in Senatore et al. (2019).

The primary difference between f0 and ft is that the former
are compatible forces while the latter are not. Eq. (6) includes geo-
metric compatibility between element deformations and nodal
displacements by adding r equations of compatibility to force
equilibrium, i.e., the product of self-stress by element flexibility
ðWsÞTG. The internal forces f0 must be compatible so that
element capacity is not exceeded in case of control system failure
and simultaneous occurrence of the design load. Note that no de-
flection limit is considered at this stage.

However, geometric compatibility is not included in Eq. (5), and
therefore the target internal forces ft and shapes dt are not compat-
ible. In other words, the nodal positions obtained through this pro-
cess are not identical to those that result by calculating element
deformations under the external load. Geometric compatibility is
a nonlinear constraint that is often ignored in structural optimization
because it might cause convergence issues (Descamps 2014). For a
passive structure, this omission results in a postdesign phase to pro-
duce a structure that satisfies serviceability limit state (SLS) criteria,
for example, deflection limits under loading. Conversely, as already
shown in Senatore et al. (2019), disaggregation of equilibrium and
geometric compatibility is a key aspect for designing an efficient
adaptive structure. If the structure is adaptive, it can be designed
to satisfy ULS criteria passively while SLS (deflections) criteria
are met through controlled shape changes. Similarly, in this work,
the active system is employed to control the structure into target
geometrical shapes that are structurally efficient for each load case.

Eq. (7) constrains the internal forces ft within required limits for
tension and compression as well as for element buckling. The same
applies to Eq. (8) for the internal forces f0. The second moment of
area Ii is a function of the cross-sectional area αi. E, σþ and σ− are
the Young’s modulus, admissible tensile, and compressive stress,
respectively.

Eq. (9) defines upper and lower limits for dt to bound the nodal
positions in relative proximity to the input shape dinput. This is to
ensure control feasibility by avoiding extremely large shape
changes and to ensure, albeit approximately, that the maximum ac-
tuator stroke is not exceeded. Because topology optimization is not
of interest in this work, a lower limit for α is also defined in Eq. (10)
to avoid vanishing elements, i.e., elements with infinitely small
cross section. The search space of the optimization problem stated
in Eqs. (4)–(10) is continuous but not convex because the nodal
coordinates are part of the design variables and due to the element
buckling constraint (Schwarz et al. 2018). This problem was solved
through sequential quadratic programming (SQP) (Boogs and Tolle
1995). Because the structure is assumed to be built with shape dt

0,
the active system will control the structure from dt

0 rather than
dinput. For this reason, target force and target shape difference
are defined with respect to dt

0 as

Δftj ≔ ftj − f0j

Δdt
j ≔ dt

j − d0
j

∀ j ¼ 1; : : : ; np ð13Þ

where f0j and d0
j = noncontrolled internal forces and displacements

caused by the jth load case applied on dt
0. For the sake of clarity, f

0
j

is a design variable of χ [Eqs. (3) and (6)]. However, d0
j is a state

variable computed through structural analysis from f0j .

Actuation Layout Optimization

The second step of the design process is to obtain an actuator layout
(i.e., placement) that is optimal for controlling the structure into the
target shapes obtained through χ. Due to the combinatorial nature
of optimal actuator placement combined with geometric nonlinear-
ity caused by shape control, this process is carried out using a
global search method called constrained simulated annealing
(CSA) (Wah and Wang 1999). To evaluate the efficacy of a can-
didate actuator layout, force and shape control are carried out using
the process explained in section “Quasi-Static, Nonlinear Geomet-
ric Shape and Force Control.” Force equilibrium, stress constraints,
and geometric compatibility must be considered at this stage.

The objective is to maximize the similarity between shapes
controlled through actuation and the target shapes subject to

© ASCE 04020068-4 J. Struct. Eng.
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USL constraints. The similarity of controlled shapes with target
ones has to be assessed for each load case and combined into
one scalar, which is a measure of the control efficacy of a candidate
actuator layout. A similarity measure based on Euclidean distance
cannot be used because in the absence of a common reference
shape, it is difficult to quantify the degree of similarity across multi-
ple load cases. For instance, a similarity measure based on the
squared difference between the nodal positions of controlled and
target shapes cannot be normalized across different load cases
and thus it might introduce bias. For this reason, shape similarity
is evaluated using the Tanimoto index (Tanimoto 1958), a similarity
criterion so far employed in machine learning and data mining ap-
plications (Doan et al. 2004; Bajusz et al. 2015)

Q ¼ 1

np
Xnp
j¼1

ðΔdc
jÞTΔdt

j

ðΔdc
jÞTΔdc

j þ ðΔdt
jÞTΔdt

j − ðΔdc
jÞTΔdt

j
ð14Þ

This similarity criterion measures the difference between two
vectors in terms of directions and magnitude, which in this context
represent shape features and node positions, respectively. The Δdt

is the nodal displacement vector to move from the deformed shape
to the target shape. Similarly,Δdc is the nodal displacement vector
to move from deformed shape to the shape controlled through ac-
tuation [obtained from ϕ; see section “Computation of Internal
Forces and Shape Given Control Commands (ϕ)”]. Eq. (14) returns
a value between 0 and 1. The closer the value to 1 the closer the
control shape is to the target shape across np load cases. The ac-
tuator layout is obtained as the optimal solution of the following
problem:

min
y
1 −Q; s:t: ð15Þ

fcij ≤ σþ
i αi; fcij ≥ max

�
σ−
i αi;−π2EIi

l2ij

�
ð16Þ

where y ∈ Znact = vector of element indices that are assigned as
active elements; and nact = number of actuators, which is assigned
a priori. Ultimate limit state (ULS) is applied as a constraint. The
problem stated in Eqs. (15) and (16) is combinatorial and not con-
tinuous because the design variable y consists of only integers. The
task of selecting nact actuators from ne element locations has a
search space size of

ne!
nact!ðne − nactÞ! ð17Þ

When the number of structural elements is large, a full enumer-
ation is computationally impossible. A stochastic search based on
simulated annealing method (SA) (Kirkpatrick et al. 1983; Cerny
1985) is formulated. SA, which has found applications in various
engineering domains (Onoda and Hanawa 1992; Arora et al. 1995;
Reddy and Cagan 1995), mimics the cooling process of molten
metals through metallurgical annealing. In this physical process,
as the temperature decreases, particles arrange into a low energy
state. In the context of numerical optimization, a low-energy state
corresponds to an optimal solution. In SA, a parameter T steers the
search within the neighborhood of candidate solutions. A neighbor-
hood structure defines how to update the current solution y to its
neighbor y 0 within the solution space. While the value of T is high,
a neighbor is likely to be accepted, regardless of its fitness. As T
reduces, neighbor solutions with a lower fitness score are more
likely to be rejected; thus, the search is intensified in the region
of good solutions (Metropolis et al. 1953).

In constrained simulated annealing (Wah and Wang 1999), an
auxiliary design variable, the penalty factor γ is introduced to
penalize candidate solutions that violate the constraints. The neigh-
borhood structure of γ is different to that of y, therefore the search
is performed in a combined solutionþ penalty space. The range for
γ can be set to an arbitrarily high value, or to the average value of
admissible stress and buckling constraint violations for a large
number of randomly generated solutions. The value of the penalty
increases as T decreases. While T is high, a solution is likely to be
accepted, even if the solution violates the constraints. To account
for the penalty factor, the problem stated in Eq. (15) is rewritten

min
y
J ð18Þ

where J = joint objective function, defined as follows:

J ¼ 1 −Qþ γ ð19Þ

The actuator layout y is updated using a measure of efficacy to
assess how each element contributes to attain the target shapes by
changing its length. The efficacy measure is inspired by a method
presented by Senatore et al. (2019), which was formulated based on
the assumption of small deformations. When geometrical nonli-
nearity is considered, the effect of multiple actuators is not equiv-
alent to the superposition of the individual effects. Therefore, in this
work, the measure of efficacy is not used directly for selecting ac-
tuator locations. It is instead employed as a heuristic to introduce bias
in the search process by giving candidate locations with a higher
control efficacy, a greater probability to be included in the candidate
solution. The efficacy measure is computed in three steps:
1. Assuming all the elements are active, their length changes to

control the structure into the target shapes are computed using
ϕ−1 [see section “Computation of Control Commands Given
Target Internal Forces and Shape (ϕ−1)”];

2. The response of the structure is evaluated by applying the length
change of each element in turn (using ϕ; see section “Computa-
tion of Internal Forces and Shape Given Control Commands
(ϕ)”] extracted from the control command vector obtained in
Step 1; and

3. The control efficacy is measured using the Tanimoto index in
Eq. (14) to evaluate the similarity between the target shapes and
the shapes caused by the length change of each element in turn.
The process is repeated to compute the control efficacy for each

element, which is normalized to form a vector P ∈ Rne

P ¼ ½Q1 · · · Qi · · · Qne �TP
ne
i¼1 Qi

ð20Þ

Vector P can also be thought of as a discrete probability distri-
bution function that is employed to generate a neighbor solution y 0.
The very first candidate solution y0 ∈ Znact is obtained as the top-
most nact elements ranked in terms of the efficacy measure P. The
generation of next neighbor solutions is obtained by drawing a ran-
dom integer that is the number of actuator locations to be replaced
from a discretized uniform distribution. An actuator location is re-
moved from the current solution through drawing from the recip-
rocal distribution function 1=P. The removed actuator is then
replaced through drawing from P, which is reduced after each draw
by removing the selected element in order to avoid selecting the
same element more than once (i.e., drawing without replacement).

This process is repeated as many times as the number of actua-
tors to be replaced in order to form the new neighbor solution y 0,
which will be accepted as a candidate solution with the following
probability:

© ASCE 04020068-5 J. Struct. Eng.
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Oy ¼ exp

�
− Jðy 0; γÞ − Jðy; γÞ

T

�
ð21Þ

When the value of T is high, if y 0 is worse than the current sol-
ution y [i.e., Jðy 0; γÞ > Jðy; γÞ] it could still be accepted with a
high probability, allowing the search to explore more extensively.
As T is reduced, the acceptance probability Oy decreases, thereby
the search is intensified in the region of good solutions.

The penalty factor γ is updated by generating a neighbor γ 0
through drawing from a uniform distribution U within the interval
of 0 and 1. The updated γ 0 will be accepted with the following
probability:

Oγ ¼ exp

�
− Jðy; γÞ − Jðy; γ 0Þ

T

�
ð22Þ

When the value of T is high, if γ 0 is lower than the current pen-
alty value γ [i.e., Jðy; γÞ > Jðy; γ 0Þ], it still has a high probability
to be accepted. However, as T is reduced, the acceptance probabil-
ity Oγ decreases, thereby the search is intensified in the region of
feasible solutions. Over iterations, y and γ have equal probability to
update to a neighbor y 0 and γ 0. However, within a single iteration
they do not update simultaneously.

A cycle contains ntemp · nrep iterations. Thus, T is updated
ntemp times. At the kth update Tk is

Tk ¼ − 1

logð1 − k
ntempÞ ð23Þ

At each Tk, either y 0 or γ 0 are updated nrep times. The number
of temperature levels ntemp and that of repetitions nrep are assigned
so that the product ntemp · nrep is sufficiently large relative to the
number of variables þ number of constraints. Once a cycle is com-
pleted, the search is restarted from the best recorded solution. The
process is repeated until convergence, i.e., when no better solution
can be obtained after consecutive searches. Algorithm 1 summa-
rizes in steps the CSA-based actuator layout search process ex-
plained in this section.

Algorithm 1. Pseudocode of the actuator layout search
1 set initial layout y←y0

2 set initial penalty γ←0
3 for k←1 to ntemp do
4 update T [Eq. (23)]
5 for l←1 to nrep do
6 if random number U½0; 1� < 0.5 then
7 generate a neighbor in solution space y 0

drawing from P [Eq. (20)]
8 evaluate y 0 using Eq. (14) with Δdc obtained

through ϕ−1
9 if y 0 is accepted [Eq. (21)] then y←y 0
10 else
11 generate a neighbor in penalty space

γ 0 ¼ U½0; 1�
12 if γ 0 is accepted [Eq. (22)] then γ←γ 0
13 end for
14 end for

Quasi-Static, Nonlinear Geometric Shape and Force
Control

During control, the objective is to obtain commands in order to
cause internal force and shape changes that best approximate

the target ones (see section “Shape and Internal Load-Path Optimi-
zation”). The method described in this section is based on the non-
linear force method through a formulation presented in Yuan
et al. (2016).

Computation of Internal Forces and Shape Given
Control Commands (ϕ)

The process of computing changes of nodal displacementsΔdc and
internal forcesΔfc under the combined effect of the external load p
and a given set of control commands Δl ∈ Rnact (i.e., actuator
length changes) is denoted as ϕ

ϕ∶ðpj;ΔljÞ → ðΔfcj ;Δdc
jÞ ∀ j ¼ 1; : : : ; np ð24Þ

where superscript c stands for controlled via actuation. Both
change of shape Δdc and internal forces Δfc can be thought of
as a function of the external load p and control commands Δl

ðpj;ΔlÞ ↦ Δfcjðpj;ΔljÞ
ðpj;ΔlÞ ↦ Δdc

jðpj;ΔljÞ
∀ j ¼ 1; : : : ; np ð25Þ

Because the process is nonlinear, generally ϕ is iterative. The
convergence criterion is based on equilibrium between internal
forces and external load by reducing the residual forces below a
set tolerance. Geometric compatibility between element deforma-
tions and nodal displacements is considered. The ϕ can be any
method that is able to simulate geometric nonlinear behavior such
as the nonlinear force method (Xu and Luo 2009; Yuan et al. 2016),
dynamic relaxation (Barnes 1977; Day 1965), and nonlinear stiff-
ness method (Crisfield 1981).

Computation of Control Commands Given Target
Internal Forces and Shape (ϕ−1)
The inverse process to ϕ is to compute actuator commands Δl to
control a target force Δft and shape Δdt change

ϕ−1∶ðΔftj;Δdt
jÞ → Δlj ∀ j ¼ 1; : : : ; np;

ðΔftj;Δdt
jÞ ↦ ΔljðΔftj;Δdt

jÞ ð26Þ

where Δl is thought of as a function of target force Δft and shape
Δdt changes.

For small deformations, the shape Sd ∈ Rnd×ne and force Sf ∈
Rne×ne influence matrices relate element length changes Δle ∈ Rne

to changes of shape Δd and internal forces Δf

Δf ¼ SfΔle ð27Þ

Δd ¼ SdΔle ð28Þ

Sf ¼ −WsðWT
sGWsÞ−1WT

s ð29Þ

Sd ¼ Bþ½I −GWsðWT
sGWsÞ−1WT

s � ð30Þ

Note that in Eqs. (27) and (28), Δle is length change of all
the elements that are considered active at this stage. The Bþ is
the generalized inverse of the compatibility matrix B ∈ Rne×nd

(transpose of the equilibrium matrix A) and G ∈ Rne×ne is the

© ASCE 04020068-6 J. Struct. Eng.
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member flexibility matrix. The matrix Ws ∈ Rne×r is obtained by
singular value decomposition (SVD) of the equilibrium matrix A

A ¼ ½Ur Uq �
�
Vr 0

0 0

�
½Wr Ws �T ð31Þ

The rows of Ws are the r states of self-stress, where r is the
degree of static indeterminacy. Thus, for a statically determinate
system Ws does not exist. Further inspection of Eqs. (29) and
(30) shows that for statically determinate systems Sd can simply
be expressed as B−1, while Sf does not exist. This means for stati-
cally determinate structures, the actuator length changes do not di-
rectly cause a change of internal forces because the corresponding
change of shape is not resisted by passive stiffness. However, due to

geometric nonlinearity, a change of shape caused by the actuator
length changes result in a change of forces regardless the degree
of static indeterminacy of the structure.

Given an actuator layout, the shape influence matrix is reduced
to S�

d ∈ Rncd×nact , which contains only the rows and columns cor-
responding to the controlled degrees of freedom ncd and active
elements nact, respectively. Similarly, S�

f ∈ Rne×nact is the force in-
fluence matrix Sf whose columns are reduced to contain only those
corresponding to the active elements nact. Usually, the number of
controlled degrees of freedom is higher than that of the actuators
because it is desirable to employ a simple actuation system in order
to reduce installation and maintenance costs as well as control com-
plexity. As a result, S�

d and S�
f are generally rectangular matrices

with significantly more rows than columns (i.e., linear system with

Fig. 3. (a) Initial geometry; (b) node numbers; and (c and d) element numbers.

Fig. 2. Roof structure.
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more equations than unknowns). Therefore, the control commands
Δl ∈ Rnact to reach the target shapes and internal forces are ob-
tained through an approximate solution via least square optimiza-
tion subject to ULS constraints

min
Δl

�������S · Δl −
8><
>:

Δdt

Δft

0

9>=
>;
�������
2

s:t: ð32Þ

fci ≤ σþ
i αi; fci ≥ max

�
σ−
i αi;− π2EIi

l2i

�
ð33Þ

where the term S is

S ¼ ½S�
d S�

f I �T ð34Þ

The term I is the identity matrix of size nact, which is introduced
to obtain the minimum norm Δl in order to avoid large actuator
length changes which might cause numerical instability and might
also be infeasible in practice. Eqs. (32)–(34) are evaluated many
times during the actuation layout optimization [see section “Actua-
tion Layout Optimization”, Eqs. (15)–(19)]. For this reason, to in-
crease computation speed, the buckling constraints in Eq. (33) are
simplified by ignoring the effect of actuator length changes Δl on
the element effective length. However, the effect of Δl on the
element critical load is assessed in Eq. (16). In this way, the Hessian
of the Lagrangian is STS, which is positive semidefinite where S is
a full column rank rectangular matrix. For this reason, the problem
stated in Eqs. (32)–(34) can be solved efficiently using interior-
point method (IPM).

The actuator length changes Δl obtained as a solution of the
problem stated in Eqs. (32)–(34) is approximate and therefore
might not be able to cause an effective change of forces Δfc and
shape Δdc through ϕ, which are close enough to Δft and Δdt.
The Newton-Raphson scheme (Lax et al. 1972) is employed to iter-
ate to convergence, which is achieved when kΔfc −Δfc

0 k22 and

Fig. 4. Load cases: Dead load indicated by [○]; and live load indicated by ½×�.

Table 1. Load combinations

Load case Load combination

LC0 (permanent load case) 1.35 ðSWþ DLÞ
LC1 to LC4 1.35 ðSWþ DLÞ þ 1.5 (LL1 to LL2)
LC5 0.9 ðSWþ DLÞ þ 1.5 LL3

Fig. 5. Element cross-sectional area.
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kΔdc −Δdc 0 k22 is smaller than a set tolerance, where Δfc
0
and

Δdc 0
are the change of forces and shape respectively at next iter-

ation. The process can be summarized in the following steps:
1. In the first iteration internal forces fc and shape dc are set to

f0 and d0, which are the forces and shapes caused by the

external load without control (see section “Actuation Layout
Optimization”).

2. Shape and force influence matrices are computed using the cur-
rent shape dc.

3. The actuator length changeΔl is then obtained as the solution to
the optimization problem stated in Eqs. (32)–(34).

4. Effective change of forcesΔfc and shapeΔdc caused byΔl are
computed via ϕ.

5. If convergence is achieved, the process ends.
6. If convergence is not achieved, repeat from Step 2. The current

values of fc and dc are set to fc þΔfc and dc þΔdc, the target
Δft and Δdt are updated as Δft ≔ ft − fc and Δdt ≔ dt − dc,
respectively.
The process is carried out for all np load cases. Algorithm 2

gives the pseudocode of the process to compute control commands
given target shapes and an actuator layout.

Table 2. Embodied energy savings

Nodal shift
bound relative
to dinput (mm)

Embodied energy
savings with
respect to

adaptive-SS (%)

Embodied energy
savings with
respect to
passive (%)

0 0 22.6
50 5.7 28.3
100 12.5 33.7
150 17.2 37.1

Fig. 6. Target shapes: (a) LC0, dt
0; (b) LC1, d

t
1; (c) LC2, d

t
2; (d) LC0, d

t
3; (e) LC0, d

t
4; and (f) LC0, dt

5.

© ASCE 04020068-9 J. Struct. Eng.

 J. Struct. Eng., 2020, 146(5): 04020068 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
co

le
 P

ol
yt

ec
hn

iq
ue

 F
ed

er
al

e 
de

 L
au

sa
nn

e 
on

 0
7/

08
/2

0.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Algorithm 2. Pseudocode of control command computation ϕ−1
1 set as starting point d0, f0 and l0; the uncontrolled state under

external loads
2 set starting point Δdc←0, Δfc←0
3 set current dc←d0 and fc←f0

3 while true do
5 set target Δft ≔ ft − fc and Δdt ≔ dt − dc

6 compute Sd and Sf through Eqs. (29) and (30)
7 obtain Δl through Eqs. (32) and (33)
8 compute Δfc

0
, Δdc 0

through ϕ (Sec. 3)
14 if kΔfc −Δfc

0 k22<tol and kΔdc −Δdc 0 k22 < tol then
break
set dc ¼ dc þΔdc 0

and fc ¼ fc þΔfc
0

15 end while

Case Study

A roof structure, shown in Fig. 2, made of planar trusses is taken
as a case study. Each truss has a span of 10 m, a span-to-depth

ratio of 20∶1 and it is assumed to support 2 m of cover in the
out-of-plane direction. It is assumed that lateral stability is provided
by other means. The topology and support conditions are indicated
in Fig. 3(a). Node and element numbering is given in Figs. 3(b–d).

The structure is divided into six bays and consists of 26 ele-
ments. There are 24 degrees of freedom (12 nodes), of which three
are fixed and hence the degree of static indeterminacy is 5. Note
that the shape shown in Fig. 3(a) is the initial shape dinput defined in
section “Shape and Internal Load-Path Optimization.” The ele-
ments are made of structural steel (S355), with a Young’s modulus
of 210 GPa and a density of 7,850 kg=m3. To convert material mass
into embodied energy, it is assumed the elements are made of
primary steel without recycled contents with a material energy in-
tensity (MEI) of 35 MJ=kg (Hammond and Jones 2008). The cross-
bracing elements are assumed to slide freely. All elements have a
cylindrical hollow section with a wall thickness set to 10% of the
external diameter.

The structure is designed to support permanent and live load
(Fig. 4). The permanent load consists of self-weight (SW) and a
dead load (DL), which is applied on the top chord nodes as a

Fig. 7. Optimal actuator layouts for 26, 16, 15, 14, 13, 12, 11, and 10 actuators: (a) 26 actuators (all elements); (b) 16 actuators; (c) 15 actuators;
(d) 14 actuators; (e) 13 actuators; (f) 12 actuators; (g) 11 actuators; and (h) 10 actuators.

Table 3. Comparison of optimal actuator layouts for 26, 16, 15, 14, 13, 12, 11, and 10 actuators

nact
Size of the

search domain 1 −Q Eq. (15)
Norm of shape

discrepancy (mm)
Max shape

discrepancy (mm)
Norm of internal

load-path discrepancy (kN)
Max demand/
capacity ratio

26 1 1.26 × 10−5 1.97 1.45 34.04 0.95
16 5.3 × 106 2.44 × 10−5 3.23 1.32 38.31 0.98
15 7.7 × 106 2.96 × 10−5 3.65 1.51 37.13 0.98
14 9.6 × 106 5.45 × 10−5 4.20 1.63 36.71 0.98
13 10.4 × 106 1.04 × 10−4 6.87 2.34 35.32 0.98
12 9.6 × 106 1.15 × 10−4 113.32 76.30 29.56 0.97
11 7.7 × 106 1.52 × 10−4 174.23 113.00 41.55 15.64*
10 5.3 × 106 1.81 × 10−4 239.51 156.78 44.23 21.20*

Note: The asterisk highlights Max demand/capacity ratios that are greater than one.

Fig. 8. Optimal actuator layout for 12 actuators.
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distributed load of magnitude 500 kg=m2. There are three cases for
the live load (LL): LL1 is a uniformly distributed load with a mag-
nitude 75% of DL; LL2 is a moving load with a magnitude 75% of
DL applied on each bay in turn (LL2a to LL2c); and LL3 is a uni-
formly distributed uplift load with a magnitude 150% of DL. Table 1
summarizes all load combinations considered in this case study.

During geometry optimization χ (see section “Shape and Inter-
nal Load-Path Optimization”), all nodes except the supports are al-
lowed to shift vertically within a range of�150 mmwith respect to

the initial geometry dinput. The element radius lower bound is set to
5 mm. There are 482 design variables entries; 26 are the cross-
sectional areas α, 156 (26 entries × 6 load cases) the target internal
forces ft, 156 entries (26 entries × 6 load cases) the noncontrolled
internal forces under live load, and 144 (24 entries × 6 load cases)
the nodal positions dt. Convergence is achieved after 16 iterations
within 22 s on an Intel Core i7, 3.60 GHz.

The embodied energy of the adaptive design is benchmarked
against the following: (1) an adaptive structure designed without

Fig. 9. Controlled shapes and element stress: (a) permanent load case; (b) first load case; (c) second load case; (d) third load case; (e) fourth load case;
and (f) fifth load case.

© ASCE 04020068-11 J. Struct. Eng.

 J. Struct. Eng., 2020, 146(5): 04020068 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
co

le
 P

ol
yt

ec
hn

iq
ue

 F
ed

er
al

e 
de

 L
au

sa
nn

e 
on

 0
7/

08
/2

0.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



considering large shape changes, i.e., excluding Δd from the de-
sign variables (Senatore et al. 2019); (2) a passive structure with
identical topology that is weight-optimized using the same optimi-
zation for the first part but adding serviceability constraints so that
no adaptation is necessary to satisfy both ULS and SLS constraints.
The passive structure is designed considering an SLS defined by

the maximum nodal displacement of span divided by 360. Fig. 5
shows a comparison of the cross-sectional area between the
three configurations. In general, employing large shape changes
(adaptive-LS) yields smaller cross-sectional areas compared to
an adaptive structure limited to small shape changes (adaptive-
SS) as well as a passive one.

Fig. 10. Optimal and controlled element stress: (a) permanent load case; (b) first load case; (c) second load case; (d) third load case; (e) fourth load
case; and (f) fifth load case.
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The embodied energy savings with respect to adaptive-SS and
passive design are 17.2% and 37.1%, respectively. Table 2 gives the
embodied energy savings with respect to the passive structure for
different shape change bounds. The case where the nodal shifts are
zero is identical with adaptive-SS (Senatore et al. 2019). As ex-
pected, larger shape changes result into larger embodied energy
savings.

Fig. 6 shows the target shapes, the element diameter is indicated
by line thickness variation and color shading (a darker shade of
grey corresponds to a larger cross-sectional area). It can be ob-
served that the structure increases its depth in proximity of the live
load. Intuitively, an increase of depth helps to resist better the bend-
ing moment caused by the external load if the truss is thought of as
a continuous beam. Shape optimization is not carried out for the
adaptive-SS and passive structure. In these cases, the target shape
is defined by the displacement limit with respect to the initial po-
sition of the controlled degrees of freedom.

The optimal actuator layout to control the structure into the tar-
get shapes and internal forces is obtained for nact number of active
elements. Generally, a low number of active elements is desired
to reduce cost and control complexity. In addition, from Eq. (17),
the size of the search space reaches a maximum when the number
of actuators are one-half of the total number of elements. However,
below a certain number of actuators, controllability cannot be
achieved. The minimum number of actuators can be determined by
running the actuator layout search to convergence for a decreasing
number of active elements. Once the temperature level T reaches its
lowest point, a new cycle starts by resetting T. Each succeeding
cycle takes the final actuator layout of the preceding cycle as the
initial candidate solution. The search process is stopped if (1) no
improvement of the solution is achieved, or (2) no feasible solution
has been obtained. In this case study, the search for an optimal ac-
tuator layout is repeated for all elements (26 total) set as active and
then 16, 15, 14, 13, 12, 11, and 10 actuators. In each cycle of the
constrained simulated annealing optimization there are ntemp ¼
20 temperature levels T, each containing nrep ¼ 100 evaluations
of the objective and constraint functions.

Fig. 7 shows the optimal actuator layouts and Table 3 gives met-
rics related to all the cases considered in this study. In general, the
solution is symmetrical with respect to the vertical axis at midspan,
despite symmetry has not been explicitly enforced. The higher
the number of actuators, the closer the controlled shapes match

the optimal shapes. Solution feasibility is defined as the maximum
element demand over capacity ratio after control for each actuator
layout. For example, when the number of actuators is 11, the maxi-
mum element demand over capacity ratio is above 1, hence ULS is
not respected. For any number of actuators less than 12, no feasible
solution has been found.

Using the proposed heuristics based on the actuator control ef-
ficacy defined in section “Actuation Layout Optimization,” optimal
actuator layouts have been obtained after a number of evaluations
that is relatively low. For example, when the layout is made of
12 actuators, convergence has been achieved after 13,667 evaluations
(average of 10 runs) within an average time of 35 min on an Intel
Core i7, 3.60 GHz. Using the same computer, when the problem is
solved without heuristics, convergence is achieved after 45,102 eval-
uations within an average time of 142 min. A full enumeration re-
quires 9.6 × 106 evaluations, which take approximately 15 days.

Because 12 is the minimum number of actuators to obtain fea-
sible shape control, a more detailed analysis of this case is pre-
sented in the following. For clarity, this actuator layout is shown
again in Fig. 8. Fig. 9 shows the controlled shapes with element
stress mapped onto the geometry. The target shapes (Fig. 6) are
represented as dashed lines for comparison. In general, controlled
shapes match with target shapes. A discrepancy can be appreciated
visually only for the fifth load case [Fig. 9(f)]. A difference between
optimal and controlled shape is expected because not all the ele-
ments can change their lengths. The optimal shapes are obtained
without considering geometric compatibility hence they could only
be matched through control if all the elements are active. The in-
ternal forces are redirected predominantly toward the bottom chord
(Elements 1 − 5) for tension and through an arch-like structure con-
sisting of Elements 17, 7, 8, 9, and 26 for compression. The maxi-
mum actuator extension is 334 mm for Elements 12 and 15 under
load case (LC)1. The maximum actuator contraction is 61 mm for
Elements 12 and 15 under LC2 and LC4, respectively.

Fig. 10 shows the bar charts of the target ft (black) and con-
trolled fc (grey) internal forces for all load cases. Element capacity
(ULS) is shown by a horizontal line. The controlled forces (grey
bars) are generally in good agreement with the target forces (black
bars). Elements 20 and 23 are highly stressed due to their small
cross-sectional area (256 mm2), which is less than 10% that of
Elements 7, 8, and 9 (2,940 mm2). However, ULS criteria are sat-
isfied for all load cases. Maximum actuator forces are 137.1 kN in
tension for Elements 20 and 23, and 252.4 kN in compression for
Elements 17 and 26.

Table 4 indicates the maximum element demand over capacity
ratio for the internal forces f0 in case no shape control is performed
and pj is applied on the target shape under permanent load dt

0. As
discussed in section “Shape and Internal Load-Path Optimization”,
f0 are the internal forces in the event of control system failure (or
power outage) and simultaneous occurrence of the design load pj.
In this scenario, only four elements (6, 10, 18, and 25), which are
indicated by dashed lines in Fig. 11, fail due to buckling without
causing global failure of the structure. For this reason, p0

j in Eq. (6)
was reduced by excluding the load factors. This means that it is
accepted that the active system contributes to satisfy ULS

Table 4. Maximum element demand over capacity ratio without control

Load case

Max demand/capacity
ratio excluding
load factors

Max demand/capacity
ratio including
load factors

Element
number

LC0 (permanent
load case)

0.95 1.32 6, 10

LC1 0.97 1.41 6, 10
LC2 0.96 1.39 6
LC3 0.97 1.40 6, 10
LC4 0.96 1.39 10
LC5 0.76 1.17 18, 25

Fig. 11. Elements with maximum demand over capacity ratios under no control.
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requirements because in case of control system failure the structure
does not collapse.

Discussion

For civil structures, even if the load has a very low occurrence prob-
ability, a failure might be unacceptable. For this reason, a fail-safe
measure is often deemed as necessary. If optimization of geometry
and internal load-path optimization (χ) is carried out without in-
cluding the fail-safe measure defined in Eq. (6) the embodied en-
ergy savings increase to 25% (from 17%) and 43% (from 37%)
with respect to adaptive-SS and the passive configuration.

The fail-safe measure can be also relaxed by setting p0 to a
lower intensity with respect to the design load p. This means that
the structure is designed so that the active system contributes to
satisfying ULS requirements. For the case study presented in this
paper, p0 was obtained from the design load p by omitting the load
factors. Given that the design load is usually a rare event of extreme
intensity, a reduced load factor for the fail-safe measure means that
the structure is able to resist passively to loading events of lower
intensity but that might occur more frequently.

The geometry and internal load-path optimization χ formulated
in section “Shape and Internal Load-Path Optimization” is noncon-
vex because the nodal coordinates are part of the design variables
and due to the buckling constraints. For this reason, optimization
though sequential quadratic programming may result in a local
minimum. He and Gilbert (2015) have shown that imposing upper
and lower limits on the change of node positions with respect to the
initial shape is effective to exclude undesirable local optima such
as those associated with significantly different shapes (e.g., node
reversal, node/element merging). In the context of shape adaptation
such solutions are not of interest, as shape control would be imprac-
tical. Therefore, definition of limits and the initial configuration
for the nodal position is critical. The quality of the solution can be
evaluated through comparison against other methods, for example
those based on linearization (Pedersen 1973; Schwarz et al. 2018)
or those that include analytical sensitivity (Nocedal and Wright
1999) (e.g., Jacobian and Hessian).

Global optimality of the solution produced by the actuator
placement optimization given in the section “Actuation Layout
Optimization” can neither be guaranteed nor verified due to the
large size of the search domain. For this reason, the actuator layouts
obtained with this method are local minima or could be considered
as optimally-directed solutions.

Conclusions

A new method to design adaptive structures is presented in this
article. The primary contribution of this work is the use of large-
shape changes to counteract the effect of external loads so that the
design is not governed by peak loads. This is because large-shape
changes allow the structure to effectively redirect the internal
forces, thus minimizing the maximum stress governing the design.
Simulations have shown that this method produces efficient struc-
tures. For a simply supported truss of 10 m span and 0.5 m height,
up to 17% and 37% embodied energy savings are gained compared
to an equivalent adaptive structure that is designed and controlled
through small shape changes and to a weight-optimized passive
structure, respectively.

Optimal actuator placement has been formulated as a combina-
tion of constrained simulated annealing and the nonlinear force
method. This process produces appropriate actuator layout and con-
trol commands to control the structure into required shapes. This is

a challenging task due to the combinatorial nature of the actuator
placement process, which in this case includes geometric nonlinear-
ity. A heuristic for neighbor solution generation based on an actuator
control efficacy measure has been developed to help exploring the
large search space. The heuristic has significantly improved conver-
gence, which is important for structures with complex topologies that
are made many elements. Simulations have shown that this method
successfully produces actuator layouts to control the shape and in-
ternal forces as required with a low number of actuators relative to
the total number of structural elements.

Future work will include whole-life energy appraisals compris-
ing the energy embodied in the material and the operational energy
for structural adaptation. Also subject of future investigation are
(1) case studies of structures with more complex topologies to gen-
eralize the conclusions reached in this work, and (2) experimental
testing to validate the feasibility of this method when applied to the
design and control of real structures.
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Notation

The following symbols are used in this paper:
A = equilibrium matrix;
B = compatibility matrix;
dc = controlled shape;
dt = optimal (target) shape;
dt
j = optimal (target) shape under the jth load case;

dinput = initial geometry;
d0 = deformed shape (no control) computed from dt

0;
E = Young’s modulus;
f = internal forces;
fc = controlled internal forces;
ft = optimal (target) forces;
ftj = optimal (target) forces in equilibrium with the jth load

case;
f0 = internal forces (no control) computed on dt

0;
G = flexibility matrix;
g =material energy intensity (MEI);
I = element second moment of area;
i = ith element;
J = objective function in actuator layout optimization;
j = jth load case;
l = element length;

nact = number of actuators;
ncd = number of controlled degrees of freedom;
nd = number of degrees of freedom;
ne = number of elements;
nn = number of nodes;
np = number of load cases;

nrep = number of repetitions;
ntemp = number of temperature levels;
Oy = probability of acceptance of candidate actuator layout y;
Oγ = probability of acceptance of penalty factor γ;
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P = element control efficacy;
p = external load;
Q = Tanimoto similarity index;
r = degree of static indeterminacy;

Sd = shape influence matrix;
Sf = force influence matrix;
S�
d = reduced shape influence matrix;

S�
f = reduced force influence matrix;
T = temperature level;

Ws = states of self-stress;
x = design variable vector: α, f, dt;
y = actuator positions (actuator layout);
α = element cross-sectional areas;
γ = penalty factor;

Δdc = controlled shape change;
Δf = change of internal forces;
Δfc = controlled change of internal forces;
Δft = target (optimal) change of internal forces;
Δl = control commands (actuator length changes);
Δle = control commands when all elements are active;

ρ = material density;
σ− = ultimate compressive stress;
ϕ = computation of internal forces and shape given control

commands;
ϕ−1 = computation of control commands given target shape and

internal forces; and
χ = mapping between external load and shapes.
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