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Minimum Energy and Carbon Adaptive Structures

Gennaro Senatore has developed innovative computational methods for designing adaptive structures equipped with
sensing and actuation systems. These structures actively counteract external loads and environmental forces by

adjusting internal forces and morphing their shape.

The solutions derived from these methods result in a new class of load-bearing structures that are material-,
energy-, and carbon-efficient. They can be extremely slender while maintaining precise control over deflections,
making them particularly advantageous for stiffness-governed designs such as high-rise buildings, long-span

bridges, and self-supporting roof systems.

Adaptation can be employed to keep the structure within predefined response limits, such as maintaining a specific
control target shape. Alternatively, the system can operate without a predetermined target, performing real-time
optimization to achieve an optimal structural response—adjusting both shape and internal stress distribution
dynamically. Structural adaptation can also be applied to recover from damage states and to retro-fitting in order to

extend the service lifespan of aging structures.

https://www.gennarosenatore.com/research/adaptive structures/minimum energy adaptive structures

https://www.gennarosenatore.com/research/adaptive structures/structural adaptation through shape morphing
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Structural Adaptation - Objectives
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Synthesis of Minimum Energy Adaptive Structures
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Energy Assessment — Adaptive vs Passive Solutions
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Structure-Control Topology Synthesis

This work introduces the first-ever formulation for the All-In-One topology optimization of adaptive structures. This
formulation enables a simultaneous synthesis of the structural topology and the actuator placement in a single
problem statement producing global optimum solutions. The objective function includes the mass of both structural
elements and actuators. Design variables encompass the topology of structural members, the placement of actuators,
and the cross-section al areas of elements. State variables comprise element forces and deformations, nodal
displacements, and actuator commands. Constraint functions ensure that feasible solutions meet equilibrium and
geometric compatibility requirements, as well as limits on stress, stability, nodal displacements, and actuator forces.

Auxiliary constraints are formulated to linearize the formulation into a Mixed-Integer Linear Problem (MILP).

The solutions produced with this method have an absolute minimum weight comprising the mass of structural and
actuation systems. Numerical benchmarks against global optima provide the first-ever formal numerical proof

concerning the optimality of adaptive solutions against topology-optimized passive solutions.

https://www.gennarosenatore.com/research/adaptive structures/all-in-one structure-control topology synthesis

PhD habil. Gennaro Senatore
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Structure-Control Topology Synthesis
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All-In-One Structure-Control Topology Synthesis (MILP)

1 min ip,L,iA,‘,”a‘,Jrl“ SR
7 7

PhD habil. Gennaro Senatore

System mass = structure + actuators

st

A% c{o}”, A cfo}” , A= c{o )"

Design variables

Structural Topology

>4 =1Vie E®

Cross-section assignment

FcR™ F= cR™, F* c R"
deR”, e c R AL c R™

State variables

2
7 (includes zero-area)
o | e EA
3 Z\A” =LVicE Existence of select elements
7
o _ o (i m
4 oA =4 k) € E Symmetry layout constraints
7 7
o ot .
5 ZIAu + 34 <1LV(ik) € E Avoid crossing elements
= 7
204 Relation between nodes and element
* ieg 1 . ; s
6 <A <Y S A VhkeN! topology
[E; | i
7% > 4 <|NY \[1 -4 ) N #@, Vie E® Avoid overlapping elements
keNe =
. SO Ay > A, ke NS, e = 3, if 21y Avoid mechanisms caused by
iy i1 4, if 3D collinear elements
Actuator Placement
9 A <A Vi€ EF Relation between actuator topology
A“" and element topology A
10 Z A <n Vi€ E® Actuator number upper bound
State Conditions + Response Control
1 BF =P +P™ + P Equilibrium
Tq— -
12 Bid= Z@w +ALVIEE Geometric compatibility + control
7
E < Vi e EGS -
13 F= fz&,a, ,Vie E' Constitutive
i 7
Limit States
T max(¢ (o) \qa ) S F =Y a'aa
7 7
14% ) 7”5(1 +;Lz) . , Vie EY Stress and buckling constraints
¢ =— =, A=1l-y, y=—
4z (1-2%)
e, = A 5',(max(£/ o
15 . Y e Vi€ EF Deformation constraints
ey [s‘ .(min(e e
16 —d<d<d Displacement constraints
Control Feasibility
17 0<F FA Actuator force upper bound
18 AL A < AL < AL A“ Actuator length change limit
Auxiliary constraints
19 Fo <F < ¥ Relation between element force F
= and actuator force F*“to linearize
20 0<F™ —F*“ <ao(1-A“)

the objective function

A efo,1}"
A e{o)"”
A" e{o1)"
acR™

F e R™
deR"™
ecR”

Fawc c Rn"’
Fact c Rnd
AL € R™
Ea’:!

ECTDH

Ef=x

E(E

¥ 44

Fom

chof

N¢!
Nf
NGS

Actuator assignment
Element assignment

Node assignment
element cross-section area

element forces
nodal displacements

element elastic deformation for Step1-MINLP
maximum element forces (auxiliary)

actuator forces
actuator commands (i.e., length changes)

index set of actuator positions

index set of crossing element in the ground structure
index set of elements that must be retained (i.e., not eliminated)

index set of all elements in the ground structure

index set of all elements connected to node &
index set of symmetric elements

index set of controlled degrees of freedom
index set of all nodes contained within the length of element i
index set of nodes not constrained by supports and with no applied loads

index set of all nodes in the ground structure

13



		



		index set of controlled degrees of freedom



		



		index set of all nodes contained within the length of element i



		



		index set of nodes not constrained by supports and with no applied loads
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		nodal displacements



		



		element elastic deformation for Step1-MINLP
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		maximum element forces (auxiliary)
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		Actuator assignment
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		element cross-section area
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		actuator commands (i.e., length changes)
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New Limits of Material Economy

“... the ability to reduce strain and displacement response through actuation yields a global least-weight
solution identical to a fully stressed design (i.e., Michell truss) that is obtained by neglecting geometric

compatibility and displacement constraints.”

“... the simultaneous optimization of structural topology and actuator placement produce solutions that
approach, with the least deterioration, fully stressed designs and, in parallel, satisfy important constraints

including displacements and buckling that would not be possible without adaptation.”

PhD habil. Gennaro Senatore



Adaptive Bridge Structures

This work introduces methods for retrofitting aging bridges and designing new ones with active components,
focusing on increasing span, reducing material use and emissions, and extending service life. High-speed railway
(HSR) bridges face challenges in meeting serviceability limits for longer spans, often requiring substantial material
increases. To address this, an External Adaptive Tensioning (EAT) system was developed, employing under-deck
cables and active struts with linear actuators to counteract external loads. Studies on steel beam-bridge

configurations show the EAT system achieves up to 32% mass and 25% CO: savings compared to passive designs.

Europe’s aging bridge infrastructure presents a growing concern, with 40-50% of bridges over 50 years old facing
increased traffic loads. Active retrofitting demonstrates potential to extend service life. Using linear actuators in
hanger cables and stays, active control can reduce the stress response mitigating fatigue and extending service life
beyond 75 years by maintaining stresses below the Constant Amplitude Fatigue Limit (CAFL). For prestressed
concrete bridges, the EAT system shows promise in addressing corrosion risks by compensating deflections caused
by loss in prestress force, reducing the moment response in the Ultimate Limit State (ULS) and extending service

life.

https://www.gennarosenatore.com/research/adaptive structures/adaptive bridge structures

PhD habil. Gennaro Senatore
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Design of New Bridges with External Adaptive Tensioning (EAT)
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External Adaptive Tensioning (EAT)

Span Carbon footprint
L (m) reduction

40 19%

50 21%

60 28%

70 29%

80 27%

PhD habil. Gennaro Senatore

Reduce vibration response under diverse
loading including high-speed train

Reduce dynamically induced stress

Extend service life, reduce damage
accumulation

Reduce carbon footprint
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Retrofit Bridge Structures with Active Components

Girder Cable-stayed
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Actuator Configuration (Fleher Bridge)

Deck critical location
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Service Life Extension through Active Control (Fleher Bridge)

Uncontrolled

Controlled
— — — -Retrofit after 30 years with control system
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Reduction of acceleration and stress response through active control results in significant
mitigation of fatigue-induced damage
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Active Retrofitting Strategies for Bridge Service Life Extension

Pronounced reduction in the response under loading

Ill

Significant fatigue life extension, potential “infinite” fatigue life
12-year extension damage induced by corrosion in reinforced concrete single span highway bridge
Required control forces remain within the limits reached by modern actuators

When the actuators are placed in the main load path, an increase in stress response could occur in
non-critically stressed elements

Future work

High-fidelity modeling + consideration of reliability

PhD habil. Gennaro Senatore



Adaptive Floor Systems

Concrete flat slabs are significantly oversized because the material is not optimally distributed to resist bending
from external loads. Floor slabs account for over 50% of the material mass in typical concrete buildings, therefore

lightweight systems could greatly reduce construction-related carbon footprints.

Adaptive ribbed slabs use tendons embedded in concrete ribs. These unbonded tendons are controlled by integrated
actuators. Since the tendons are eccentric to the axis of the ribs-slab assembly, bending moments are generated that
effectively reduce stress and displacements caused by external loads. Active control is required under strong loading
events that occur infrequently; therefore, the structure-control system is optimal in terms of mass and energy
efficiency. Numerical studies shows that adaptive slab solutions achieves up to 67% material savings compared

with an equivalent passive flat slab.

https://www.gennarosenatore.com/research/adaptive structures/adaptive floor systems

PhD habil. Gennaro Senatore
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Environmental Impact of Structures per Function

Beams, frames 5-15%

Foundation 10-15%

Columns 5%

van der Lugt, P., Martin, I.L. and Dufourmont, J., Discussing timber myths: a dialogue between our ambitions and the facts, Amsterdam Institute for
Advanced Metropolitan Solutions, 2023.

PhD habil. Gennaro Senatore
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Active Rib

S — — |-

— e

The tension force is applied eccentrically to the neutral axis of the slab-ribs assembly
causing a bending moment that counteracts the effect of the external load.
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Experimental Validation — Active Rib Prototype
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https://www.gennarosenatore.com/research/adaptive_structures/adaptive_floor_systems

Adaptive Ribbed Slab — Controlled Response

Load Case

140 -
120 -
100 A
80 A
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40 ~
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Actuator forces
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\/ NN

A. P. Reksowardojo, G. Senatore, M. Bischoff, and L. Blandini, “Design and Control Benchmark of Rib-Stiffened Concrete Slabs Equipped with an Adaptive Tensioning System,”
Journal of Structural Engineering, vol. 150, no. 1, p. 04023200, Jan. 2024.

Controlled | (mm)

N
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Performance Metric Benchmark

(a) 2022 energy mix in southwest Germany (Energie Baden-Wiirttemberg 2022)

o 2) 3) )
Metric . Rib-stiffened Voided Rib-stiffened
Flat — passive . . .
— passive — passive — adaptive
CO (kgCO1-eq) 5.308 x 10* 4.236 x 10* 3.437 x 10* 1.662 x 10*
CO (kgCOr-¢q) 0 0 0 0.646 x 10*
CO + CO” (kgCOr-eq) 5.308 x 10* 4.236 x 10* 3.437 x 10* 2.308 x 10*
wrt. (1) - 20% 35% 57%
Carbon reductions wrt. (2) - - 19% 46%
wrt. (3) - - - 33%

PhD habil. Gennaro Senatore



Adaptive Slab Prototype

Plan View - 1:10

A 10 x 6 m prototype slab is under construction.
The void formers are fabricated through CNC by folding 2 mm aluminum plates

PhD habil. Gennaro Senatore
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Structural Resource Use Intensity Benchmark — Floor Slabs
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D. Pohoryles, E. Romano, “A practical guide to the New European Bauhaus self-assessment method and tool”, Joint Research Center — European Commission, 2024.
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Vibration Control through Adaptive Stiffness and Damping Components

Gennaro Senatore has co-directed the development of an innovative vibration control strategy based on adaptive stiffness and damping
structural components. Such adaptive components are new semi-active control devices that can be integrated into most structural systems
(multi-story buildings, bridges, roof systems, airplane wings, wind turbine blades, etc.) because they also function as load-bearing
elements. Stiffness and damping properties of such adaptive components can be controlled through thermal actuation (solid-state) without

involving complex mechanisms based on moving parts.

The actuation mechanism is inherent within the properties of the material enabling a reliable control system. Thermal actuation of the
adaptive components enables a controlled shift of the structure's natural frequencies and increases the structural damping ratio, which can
effectively reduce the dynamic response of structures under a wide range of conditions including harmonic loading, earthquakes and

pedestrian/vehicular traffic.

https://www.gennarosenatore.com/research/adaptive structures/vibration control through variable stiffness and damping structural components

PhD habil. Gennaro Senatore


https://www.gennarosenatore.com/research/adaptive_structures/vibration_control_through_variable_stiffness_and_damping_structural_components

Semi-Active Response Control through Frequency and Damping Shift

Material

Glass-to-rubber transition
through thermal actuation

PhD habil. Gennaro Senatore

Component

Structure

Component stiffness reduction
Increase of material damping

Frequency shift
Increase of structural damping
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https://www.gennarosenatore.com/research/adaptive_structures/vibration_control_through_variable_stiffness_and_damping_structural_components

Design of Structures through Reuse

Gennaro Senatore co-directed the development of a new computational methodology to design structures
through reuse. In line with circular economy principles, the existing building stock could be thought of as a
large source of available construction materials. In this context, an effective strategy to reduce structures'
adverse environmental impacts (EI) is to reuse components over multiple service cycles, which avoids the
use of material resources, reduces energy for reprocessing and waste production. Discrete structural
optimization techniques have been formulated to design spatial trusses and frames that make the best use of
a stock of reclaimed structural elements (e.g. obtained from demolished structures). The objective is the
minimization of EI through optimization of stock element assignment and partitioning as well as the

structure topology and geometry subject to typical strength and deflection requirements.

www.gennarosenatore.com/research/design_of structures_through reuse

PhD habil. Gennaro Senatore

35


http://www.gennarosenatore.com/research/design_of_structures_through_reuse

Conventional Design Design through Reuse

9

Video demonstration

PhD habil. Gennaro Senatore


https://www.gennarosenatore.com/research/design_of_structures_through_reuse/design_from_reuse.html
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J. Briitting, J. Desruelle, G. Senatore and C. Fivet, "Design of Truss Structures through Reuse," Structures, vol. 18, pp. 128-137, 2019.
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Environmental Impact Benchmark

Environmental Impact

100
Reuse New

80

2 -60%
[ o 60

40

N e N 2°

Reuse + Optimization — reduce El significantly
The combination of reuse and new elements produces structures of least environmental impact (El)
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Interactive Structural Analysis and Design

Real-time physics simulation has been widely used in computer games, but its full potential in engineering design and
education remains underexplored. By integrating computational techniques from computer graphics with established
numerical methods for structural analysis, an interactive platform emerges—allowing students and designers to
develop both qualitative and quantitative insights into structural behavior. Real-time feedback and interactive modeling

offer significant advantages in teaching, making complex structural concepts more intuitive and engaging.

PushMePullMe is an interactive physics engine developed by Gennaro Senatore to support teaching in structural
mechanics and design. It employs a vector-form finite element method, combining the dynamic relaxation method
with the co-rotational formulation to analyze structures exhibiting geometric non-linearity. The software accounts for
element and global buckling, enabling users to explore advanced tasks such as form-finding through shape and

topology optimization in real time.

Users can manipulate structural models interactively—pushing and pulling with a mouse or touch interface—while
stress distributions and deformations are visualized instantly. The intuitive interface makes the software accessible
even to those with no prior structural engineering experience. PushMePullMe has been widely adopted by educators

worldwide, enhancing the learning experience by bridging theoretical concepts with hands-on experimentation.

https://www.gennarosenatore.com/teaching/

Software download at https://www.gennarosenatore.com/research/push_me pull me_3d

PhD habil. Gennaro Senatore
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https://www.gennarosenatore.com/research/push_me_pull_me_3d

Video demonstration
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Video demonstration
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https://vimeo.com/groups/pushmepullme/videos/111977424
https://www.gennarosenatore.com/research/push_me_pull_me_3d
https://vimeo.com/groups/pushmepullme/videos/111977423
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https://vimeo.com/groups/pushmepullme/videos/33090585

Computational Design

Digital technologies are a strategic asset to produce innovation in the building sector. Well-
reasoned adoption of modern computer-aided-design software and hardware will improve productivity and
will be a catalyst for the emergence of new design solutions that could lead to increased efficiency in
the use of resources (e.g., material, carbon).

Design in practice is a multi-objective and iterative process that involves several stakeholders including
architects, structural engineers, contractors and clients. In early-stage design, there is a need for an
intuitive yet analytically informed approach to produce and test efficiently multiple what-if scenarios.
This course will provide an overview of different approaches and transfer fundamentals of parametric
and algorithmic modeling to frame the design process within a computational workflow. This
integrated approach enables the efficient generation and performance evaluation of candidate solutions as
the design process evolves. The lectures provide students with theoretical elements as well as hands-on
experience through computational modeling.

www.gennarosenatore.com/research/generative design

PhD habil. Gennaro Senatore


http://www.gennarosenatore.com/research/generative_design/

Geometry Definition + Structural Analysis Feedback

Computational workflow to generate the structure of a multi-story building, apply geometrical variations including floor rotation, height and floor area scaling.
Prepare the model for analysis sorting i by columns, floor beams and bracing per floor.
Prepare the model for daylight analysis sorting geometric components by floor slab (surface), celing (surface), workplane (surface), and facade mesh panels (windows)

Main

This workflow makes use of "Hops components" to subdivide the model into sub-tasks:
1. geometry generation

2. preparation for analysis

3. analysis

Ahop is { a method ion) that takes inputs and gives outputs just like any other component in Grasshopper.
However, it is user-defined and it can be called from any other Grasshopper definition by setting the file path as one of the inputs.
This is a good way to manage the complexity of the algorithm by subdividing it into smaller parts.

The input of a hops component can be set to single value, list and data tree. When set as a single value, the method will be applied on
each input separately. If it the input is set as a list, the whole list will be taken as input. To make hops undertand that the input is a list, set the

When the input is a data tree, each branch in the data tree will be interpreted as a separate list input. This means that if the input is organized
as a data tree, and the method (hop component) has to work with the whole data tree, the input must be flattened into a list outside the hop component
and then re-partioned into a data tree inside the hop component.

Further il ion about Hops at rhino3d.
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Maximum Displacement vs Rotation Variation
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