

Portfolio

Gennaro Senatore PhD habil. MRes MSc MEng (Hons) www.gennarosenatore.com

Table of Contents

Research Path	3	
Minimum Energy and Carbon Adaptive Structures	4 – 10	
Structure-Control Topology Synthesis	11 – 15	
Adaptive Bridge Structures	16 – 22	
Adaptive Floor Systems	23 – 31	
Vibration Control through Adaptive Stiffness and Damping Components		
Design of Structures through Reuse	35 – 38	
Interactive Structural Analysis and Design	39 – 41	
Computational Design	42 – 44	

Minimum Energy and Carbon Adaptive Structures

Gennaro Senatore has developed innovative computational methods for designing adaptive structures equipped with sensing and actuation systems. These structures actively counteract external loads and environmental forces by adjusting internal forces and morphing their shape.

The solutions derived from these methods result in a new class of load-bearing structures that are **material**-, energy-, and carbon-efficient. They can be extremely slender while maintaining precise control over deflections, making them particularly advantageous for stiffness-governed designs such as high-rise buildings, long-span bridges, and self-supporting roof systems.

Adaptation can be employed to keep the structure within predefined response limits, such as maintaining a specific control target shape. Alternatively, the system can operate without a predetermined target, performing **real-time optimization** to achieve an optimal structural response—adjusting both shape and internal stress distribution dynamically. Structural adaptation can also be applied to recover from damage states and to retro-fitting in order to extend the service lifespan of aging structures.

https://www.gennarosenatore.com/research/adaptive_structures/minimum_energy_adaptive_structures/ https://www.gennarosenatore.com/research/adaptive_structures/structural_adaptation_through_shape_morphing_

Structural Adaptation - Objectives

Action curve

Synthesis of Minimum Energy Adaptive Structures

G. Senatore, P. Duffour and P. Winslow, "Synthesis of Minimum Energy Adaptive Structures," Structural and Multidisciplinary Optimization, vol. 60, no. 3, pp. 849-877, 2019.

Case Studies

Energy Assessment – Adaptive vs Passive Solutions

Exhibition – The Building Centre

45 pessive steel members, of which this is the largest.

This has an outer diameter 60.3mm an wall thickness 3.9mm. This efficient circular hollow section member is under the greatest compressive load. 102 ==

260

10 ==____

37:1 ==

Structure-Control Topology Synthesis

This work introduces the first-ever formulation for the All-In-One topology optimization of adaptive structures. This formulation enables a **simultaneous synthesis** of the **structural topology** and the **actuator placement** in a single problem statement producing global optimum solutions. The objective function includes the mass of both structural elements and actuators. Design variables encompass the topology of structural members, the placement of actuators, and the cross-section al areas of elements. State variables comprise element forces and deformations, nodal displacements, and actuator commands. Constraint functions ensure that feasible solutions meet equilibrium and geometric compatibility requirements, as well as limits on stress, stability, nodal displacements, and actuator forces. Auxiliary constraints are formulated to linearize the formulation into a Mixed-Integer Linear Problem (MILP).

The solutions produced with this method have an **absolute minimum weight** comprising the mass of structural and actuation systems. Numerical benchmarks against **global optima** provide the first-ever formal numerical proof concerning the optimality of adaptive solutions against topology-optimized passive solutions.

https://www.gennarosenatore.com/research/adaptive structures/all-in-one structure-control topology synthesis

Structure-Control Topology Synthesis

G. Senatore and Y. Wang, "Topology Optimization of Adaptive Structures: New Limits of Material Economy," Computer Methods in Applied Mechanics and Engineering, vol. 422, 2024

All-In-One Structure-Control Topology Synthesis (MILP)

1 mi	$\mathbf{n} \sum_{i}^{n'} \rho_i L_i \sum_{j}^{n'} A_{ij}^{ci} a_j^c + c^{a(c)} \sum_{i}^{n''} F_i^{a(c)}$	System mass = structure + actuators	$\mathbf{A}^{el} \in \left\{0,1 ight\}^{n^{el}}$, \mathbf{A}	$\mathbf{A}^{n} \in \left\{0,\mathbf{l} ight\}^{n^{f}}$, $\mathbf{A}^{act} \in \left\{0,\mathbf{l} ight\}^{n^{d}}$	Design variables
	s.t. Structural Topology		$\mathbf{D} = \mathbf{B} \mathbf{n}^{d}$		
2	$\sum_{j} A_{ij}^{cl} = 1, \forall i \in E^{GS}$	Cross-section assignment (includes zero-area)	$\mathbf{F} \in \mathbb{R}^n$, \mathbf{F}^{\max}	$\in \mathbb{R}^n$, $\mathbb{P}^{\infty} \in \mathbb{R}^n$	State variables
3	$\sum_{j>1}A_{ij}^{cl}=1, orall i\in E^{flix}$	Existence of select elements	$\mathbf{d} \in \mathbb{R}^{n^{j}}$, $\mathbf{e} \in \mathbb{R}^{n^{j}}$	$\mathbb{R}^{n^{n} imes n^{a}}, \mathbf{\Delta L} \in \mathbb{R}^{n^{n}}$	
4	$\sum_{j}A^{el}_{ij}=\sum_{j}A^{el}_{ij}, \ orall (i,k)\in E^{ ext{sym}}$	Symmetry layout constraints	$\mathbf{A}^{act} \in \{0,1\}^{n^{el}}$	Actuator assignment	
5	$\sum_{j>1}A_{ij}^{el}+\sum_{j}A_{kj}^{el}\leq 1,\ orall \left\langle i,k ight angle \in E^{cross}$	Avoid crossing elements	$\prod_{l=1}^{n} C(0,1)$		
6*	$\frac{\sum_{i \in E_{k}^{n}} \sum_{j > 1} A_{ij}^{cl}}{\prod_{i = 1} \sum_{j < k} A_{k}^{cl}} \leq A_{k}^{n} \leq \sum_{i} \sum_{j < k} A_{ij}^{cl}, \forall k \in N^{f}$	Relation between nodes and element topology	$\mathbf{A}^{el} \in \left\{0,1\right\}^n$	Element assignment	
	$ E_k^* \qquad \qquad$		$\mathbf{A}^{n} \in \left\{0,1\right\}^{n'}$	Node assignment	
7*	$\sum_{k \in N^{d}} A_{k}^{n} \leq \left N_{i}^{el} \right \left(1 - \sum_{j > 1} A_{ij}^{el} \right), N_{i}^{el} \neq \emptyset, \ \forall i \in E^{GS}$	Avoid overlapping elements	$oldsymbol{lpha} \in \mathbb{R}^{n^{el}}$	element cross-section area	
8*	$\sum_{i \in E_k^n} \sum_{j > 1} A_{ij}^{el} \ge c^n A_k^n, \forall k \in N^f, c^n = \begin{cases} 3, \text{ if } 2D \\ 4, \text{ if } 3D \end{cases}$	Avoid mechanisms caused by collinear elements	$\mathbf{F} \in \mathbb{R}^{n^{el}}$	element forces	
	Actuator Placement		$\mathbf{d} \in \mathbb{R}^{n^{dof}}$	nodal displacements	
9	$A_i^{act} \leq \sum_{j>1} A_{ij}^{al} \;, \; orall i \in E^{GS}$	Relation between actuator topology \mathbf{A}^{act} and element topology \mathbf{A}^{el}	$\mathbf{e} \in \mathbb{R}^{n^e}$	element elastic deformation fo	r Step1-MINLP
10	$\sum_{i} A_{i}^{act} \leq \overline{n}^{act}, \forall i \in E^{GS}$	Actuator number upper bound	$\mathbf{F}^{aux} \in \mathbb{R}^{n^{el}}$	maximum element forces (aux	iliary)
	State Conditions + Response C	ontrol	$\mathbf{F}^{act} \in \mathbb{R}^{n^{el}}$	actuator forces	
11*	$\mathbf{BF} = \mathbf{P} + \mathbf{P}^{\text{sum}} + \mathbf{P}^{\text{sum}}$	Equilibrium	$\Delta \mathbf{L} \in \mathbb{R}^{n^{el}}$	actuator commands (i.e., length	n changes)
12	$\mathbf{B}_{i}^{T}\mathbf{d}=\sum_{j}e_{ij}+\Delta L_{i},\forall i\in E^{GS}$	Geometric compatibility + control	Fact	index set of actuator positions	
13	$F_{i} = \frac{E_{i}}{L_{i}} \sum_{j} e_{ij} a_{i}^{c}, \forall i \in E^{GS}$	Constitutive	12		
	Limit States		E	index set of crossing element i	in the ground structure
1.4%	$\sum_{j} A_{ij}^{el} \max\left(c^{b}\left(a_{i}^{c}\right)^{2}, \underline{\sigma}a_{i}^{c}\right) \leq F_{i} \leq \sum_{j} A_{ij}^{el} \overline{\sigma}a_{i}^{c}$		E^{fx}	index set of elements that mus	t be retained (i.e., not eliminated)
14*	$c^{b} = \frac{-\pi E \left(1 + \lambda^{2}\right)}{4L_{i}^{2} \left(1 - \lambda^{2}\right)}, \ \lambda = 1 - \gamma, \ \gamma = \frac{t}{r^{e}} $	Stress and buckling constraints	E^{GS}	index set of all elements in the	ground structure
15	$e_{ij} \ge A_i^{ed} \left[\underline{e}_i^{ed}, \left(\max\left(\underline{e}_i^{ed}, \underline{e}_i^{F} \right) \right) \right] \forall i \in F^{GS}$	Deformation constraints	E_k^n	index set of all elements conne	ected to node <i>k</i>
15	$e_{ij} \leq A_i^{el} \left[\overline{e_i}^d, \left(\min\left(\overline{e_i}^d, \overline{e_i}^F\right) \right) \right], i \in \mathbb{Z}$	Detormation constraints	Esym	index set of symmetric elemen	its
16	$-\overline{\mathbf{d}} \leq \mathbf{d} \leq \overline{\mathbf{d}}$	Displacement constraints	N Tcdof	index set of controlled degrees	s of freedom
17	Control Feasibility $0 < \Gamma^{act} + act$	Actuator force upper bound	IN,		
18	$ \begin{array}{c} \mathbf{U} \geq \mathbf{r} \geq t' \mathbf{A} \\ \hline \\ -\overline{\Delta L} \mathbf{A}^{act} \leq \Delta \mathbf{L} \leq \overline{\Delta L} \mathbf{A}^{act} \end{array} $	Actuator length change limit	N_i^{el}	index set of all nodes contained	d within the length of element i
	Auxiliary constraints		N^f	index set of nodes not constrai	ned by supports and with no applied loads
19	$-\mathbf{F}^{aax} \leq \mathbf{F} \leq \mathbf{F}^{aax}$	Relation between element force F and actuator force F ^{act} to linearize	NIGS	index set of all nodes in the or	ound structure
20	$0 \le \mathbf{F}^{aac} - \mathbf{F}^{act} \le a\sigma (1 - \mathbf{A}^{act})$	the objective function	N^{00}	muck set of an nodes in the gro	

High-Rise Buildings

New Limits of Material Economy

"... the ability to reduce strain and displacement response through actuation yields a global least-weight solution identical to a fully stressed design (i.e., Michell truss) that is obtained by neglecting geometric compatibility and displacement constraints."

"... the simultaneous optimization of structural topology and actuator placement produce solutions that approach, with the least deterioration, fully stressed designs and, in parallel, satisfy important constraints including displacements and buckling that would not be possible without adaptation."

G. Senatore and Y. Wang, "Topology Optimization of Adaptive Structures: New Limits of Material Economy," *Computer Methods in Applied Mechanics and Engineering*, vol. 422, 2024

Adaptive Bridge Structures

This work introduces methods for retrofitting aging bridges and designing new ones with active components, focusing on increasing span, reducing material use and emissions, and extending service life. High-speed railway (HSR) bridges face challenges in meeting serviceability limits for longer spans, often requiring substantial material increases. To address this, an **External Adaptive Tensioning** (EAT) system was developed, employing under-deck cables and active struts with linear actuators to counteract external loads. Studies on steel beam-bridge configurations show the EAT system achieves up to 32% mass and 25% CO₂ savings compared to passive designs.

Europe's aging bridge infrastructure presents a growing concern, with 40-50% of bridges over 50 years old facing increased traffic loads. Active retrofitting demonstrates potential to extend service life. Using linear actuators in hanger cables and stays, active control can reduce the stress response mitigating fatigue and extending service life beyond 75 years by maintaining stresses below the Constant Amplitude Fatigue Limit (CAFL). For prestressed concrete bridges, the EAT system shows promise in addressing corrosion risks by compensating deflections caused by loss in prestress force, reducing the moment response in the Ultimate Limit State (ULS) and extending service life.

https://www.gennarosenatore.com/research/adaptive_structures/adaptive_bridge_structures

Design of New Bridges with External Adaptive Tensioning (EAT)

A. P. Reksowardojo, G. Senatore, M. Bischoff, and L. Blandini, "Design and control of high-speed railway bridges equipped with an under-deck adaptive tensioning system," Journal of Sound and Vibration, vol. 579, p. 118362, Jun. 2024, doi: 10.1016/j.jsv.2024.118362.

External Adaptive Tensioning (EAT)

Span L (m)	Carbon footprint reduction
40	19%
50	21%
60	28%
70	29%
80	27%

Reduce vibration response under diverse loading including high-speed train

Reduce dynamically induced stress

Extend service life, reduce damage accumulation

Reduce carbon footprint

Retrofit Bridge Structures with Active Components

Girder

Cable-stayed

Actuator Configuration (Fleher Bridge)

Acceleration response under 30000 vehicle crossing

K. A. Canny, G. Senatore, and L. Blandini, "Investigation of retrofitting strategies to extend the service life of bridge structures through active control," Journal of Bridge Engineering (ASCE), 2025. DOI: 10.1061/JBENF2.BEENG-6925

Service Life Extension through Active Control (Fleher Bridge)

Reduction of acceleration and stress response through active control results in significant mitigation of fatigue-induced damage

K. A. Canny, G. Senatore, and L. Blandini, "Investigation of retrofitting strategies to extend the service life of bridge structures through active control," Journal of Bridge Engineering (ASCE), 2025. DOI: 10.1061/JBENF2.BEENG-6925

Active Retrofitting Strategies for Bridge Service Life Extension

Pronounced reduction in the response under loading

Significant fatigue life extension, potential "infinite" fatigue life

12-year extension damage induced by corrosion in reinforced concrete single span highway bridge

Required control forces remain within the limits reached by modern actuators

When the actuators are placed in the main load path, an increase in stress response could occur in non-critically stressed elements

Future work

High-fidelity modeling + consideration of reliability

Adaptive Floor Systems

Concrete flat slabs are significantly oversized because the material is not optimally distributed to resist bending from external loads. Floor slabs account for over 50% of the material mass in typical concrete buildings, therefore lightweight systems could greatly reduce construction-related carbon footprints.

Adaptive ribbed slabs use tendons embedded in concrete ribs. These unbonded tendons are controlled by integrated actuators. Since the tendons are eccentric to the axis of the ribs-slab assembly, bending moments are generated that effectively reduce stress and displacements caused by external loads. Active control is required under strong loading events that occur infrequently; therefore, the structure-control system is optimal in terms of mass and energy efficiency. Numerical studies shows that adaptive slab solutions achieves up to **67% material savings compared with an equivalent passive flat slab**.

https://www.gennarosenatore.com/research/adaptive_structures/adaptive_floor_systems

Environmental Impact of Structures per Function

van der Lugt, P., Martin, I.L. and Dufourmont, J., Discussing timber myths: a dialogue between our ambitions and the facts, Amsterdam Institute for Advanced Metropolitan Solutions, 2023.

Synthesis of Adaptive Ribbed Floors

Sizing and rib placement obtained through a bilevel optimization process. Placement of ribs include "passive" and "active" ribs

Active Rib

The tension force is applied eccentrically to the neutral axis of the slab-ribs assembly causing a bending moment that counteracts the effect of the external load.

Experimental Validation – Active Rib Prototype

Adaptive Ribbed Slab – Controlled Response

A. P. Reksowardojo, G. Senatore, M. Bischoff, and L. Blandini, "Design and Control Benchmark of Rib-Stiffened Concrete Slabs Equipped with an Adaptive Tensioning System," Journal of Structural Engineering, vol. 150, no. 1, p. 04023200, Jan. 2024.

Performance Metric Benchmark

Metric		(1) Flat – passive	(2) Rib-stiffened – passive	(3) Voided – passive	(4) Rib-stiffened – adaptive
CO ^{em} (kgCO ₂ -eq)		$5.308 imes 10^4$	4.236×10^{4}	3.437×10^{4}	1.662×10^{4}
CO ^{op} (kgCO ₂ -eq)		0	0	0	0.646×10^{4}
$CO^{em} + CO^{op}$ (kgCO ₂ -eq)		5.308×10^4	4.236×10^{4}	3.437×10^{4}	2.308×10^{4}
	wrt. (1)	-	20%	35%	57%
Carbon reductions	wrt. (2)	-	-	19%	46%
	wrt. (3)	-	-	-	33%

(a) 2022 energy mix in southwest Germany (Energie Baden-Württemberg 2022)

A.P. Reksowardojo, G. Senatore, M. Bischoff, L. Blandini, "Design and control benchmark of rib-stiffened concrete slabs equipped with an adaptive tensioning system," Journal of Structural Engineering (ASCE), vol 150, 2023.

Adaptive Slab Prototype

A 10 x 6 m prototype slab is under construction. The void formers are fabricated through CNC by folding 2 mm aluminum plates

Structural Resource Use Intensity Benchmark – Floor Slabs

P.B. Lourenço, T. Maloutas, M. Santamouris, B. Widera, F. Ansaloni, C. Balaras, I. Katurić, D. Kolokotsa, T. Rossetto, G. **Senatore**, A. Tomaszewicz, E. Medeiros, K. Gkatzogias, D. Pohoryles, E. Romano, "A practical guide to the New European Bauhaus self-assessment method and tool", Joint Research Center – European Commission, 2024.

Vibration Control through Adaptive Stiffness and Damping Components

Gennaro Senatore has co-directed the development of an innovative vibration control strategy based on **adaptive stiffness** and **damping** structural components. Such adaptive components are new **semi-active** control devices that can be integrated into most structural systems (multi-story buildings, bridges, roof systems, airplane wings, wind turbine blades, etc.) because they also function as load-bearing elements. Stiffness and damping properties of such adaptive components can be controlled through **thermal actuation** (solid-state) without involving complex mechanisms based on moving parts.

The actuation mechanism is inherent within the properties of the material enabling a reliable control system. Thermal actuation of the adaptive components enables a controlled shift of the structure's natural frequencies and increases the structural damping ratio, which can effectively reduce the dynamic response of structures under a wide range of conditions including harmonic loading, earthquakes and pedestrian/vehicular traffic.

https://www.gennarosenatore.com/research/adaptive structures/vibration control through variable stiffness and damping structural components

Semi-Active Response Control through Frequency and Damping Shift

Q. Wang, G. Senatore, K. Jansen, A. Habraken et P. Teuffel, "Design and characterization of variable stiffness structural joints," Materials & Design, vol. 187, p. 108353, 2020.

Design of Structures through Reuse

Gennaro Senatore co-directed the development of a new computational methodology to design structures through **reuse**. In line with circular economy principles, the existing building stock could be thought of as a large source of available construction materials. In this context, an effective strategy to reduce structures' adverse environmental impacts (EI) is to **reuse components over multiple service cycles**, which avoids the use of material resources, reduces energy for reprocessing and waste production. **Discrete structural optimization** techniques have been formulated to design spatial trusses and frames that make the best use of a stock of reclaimed structural elements (e.g. obtained from demolished structures). The objective is the minimization of EI through optimization of stock element assignment and partitioning as well as the structure topology and geometry subject to typical strength and deflection requirements.

www.gennarosenatore.com/research/design_of_structures_through_reuse

J. Brütting, "Optimum design of low environmental impact structures through component reuse," Ph.D. dissertation, EPFL, 2020.

Stock-Constrained Structural Optimization

J. Brütting, J. Desruelle, G. Senatore and C. Fivet, "Design of Truss Structures through Reuse," Structures, vol. 18, pp. 128-137, 2019.

Environmental Impact Benchmark

 $\label{eq:reduce} Reuse + Optimization \rightarrow reduce \ EI \ significantly \\ The combination of reuse and new elements produces \ structures \ of \ least \ environmental \ impact \ (EI) \\ \end{array}$

J. Brütting, C. Vandervaeren, G. Senatore, N. De Temmerman and C. Fivet, "Environmental impact minimization of load-bearing structures made from reused and new elements," *Energy* and Buildings, vol. 215, p. 109827, 2020

Interactive Structural Analysis and Design

Real-time physics simulation has been widely used in computer games, but its full potential in engineering design and education remains underexplored. By integrating computational techniques from computer graphics with established numerical methods for structural analysis, an interactive platform emerges—allowing students and designers to develop both qualitative and quantitative insights into structural behavior. Real-time feedback and interactive modeling offer significant advantages in teaching, making complex structural concepts more intuitive and engaging.

PushMePullMe is an interactive physics engine developed by Gennaro Senatore to support teaching in structural mechanics and design. It employs a **vector-form finite element method**, combining the **dynamic relaxation method** with the **co-rotational formulation** to analyze structures exhibiting geometric non-linearity. The software accounts for element and global buckling, enabling users to explore advanced tasks such as form-finding through **shape and topology optimization** in real time.

Users can manipulate structural models interactively—pushing and pulling with a mouse or touch interface—while stress distributions and deformations are visualized instantly. The intuitive interface makes the software accessible even to those with no prior structural engineering experience. PushMePullMe has been widely adopted by educators worldwide, enhancing the learning experience by bridging theoretical concepts with hands-on experimentation.

https://www.gennarosenatore.com/teaching/

Software download at https://www.gennarosenatore.com/research/push_me_pull_me_3d

Video demonstration

Workshop – University of Cyprus

Workshop - University of East Anglia

Computational Design

Digital technologies are a strategic asset to produce innovation in the building sector. Wellreasoned adoption of modern computer-aided-design software and hardware will improve productivity and will be a catalyst for the emergence of new design solutions that could lead to increased **efficiency** in the use of resources (e.g., material, carbon).

Design in practice is a multi-objective and iterative process that involves several stakeholders including architects, structural engineers, contractors and clients. In early-stage design, there is a need for an **intuitive yet analytically informed approach** to produce and test efficiently multiple what-if scenarios. This course will provide an overview of different approaches and transfer fundamentals of parametric and algorithmic modeling to frame the design process within a **computational workflow**. This integrated approach enables the efficient generation and performance evaluation of candidate solutions as the design process evolves. The lectures provide students with theoretical elements as well as hands-on experience through computational modeling.

www.gennarosenatore.com/research/generative design

Geometry Definition + Structural Analysis Feedback

Mair

Computational workflow to generate the structure of a multi-story building, apply geometrical variations including floor rotation, height and floor area scaling. Prepare the model for structural analysis sorting geometric components by columns, floor beams and breating per floor. Prepare the model for daylight analysis sorting geometric components by floor is alls (surface), coeling (surface), workplane (surface), and facade mesh panels (windows)

This workflow makes use of "Hops components" to subdivide the model into sub-tasks: 1. geometry generation 2. preparation for analysis 3. analysis 3.

A hop component is practically a method (function) that takes inputs and gives outputs just like any other component in Grasshopper. However, it is user-defined and it can be called from any other Grasshopper definition by setting the file path as one of the inputs. This is a good way to manage the complexity of the algorithm by subdividing it into smaller pats.

The input of a hops component can be set to single value, list and data tree. When set as a single value, the method will be applied on each input separately. If it the input is set as a list, the whole list will be taken as input. To make hops undertand that the input is a list, set the

When the input is a data tree, each branch in the data tree will be interpreted as a separate list input. This means that if the input is organized as a data tree, and the method (hop component) has to work with the whole data tree, the input must be flattened into a list outside the hop component and then re-particined into a data tree inside the hop component.

Further information about Hops components at https://developer.rhino3d.com/guides/compute/hops-component/

Maximum Displacement vs Rotation Variation

Rotation = 0° Max displacement = 4 cm

Rotation = 90° Max displacement = 73 cm

Rotation = 180° Max displacement = 120 cm

Rotation = 270° Max displacement = 169 cm

Rotation = 360° Max displacement = 239 cm

DOI

G. Senatore, Y. Wang, "Topology Optimization of Adaptive Structures: New Limits of Material Economy," Computer Methods in Applied Mechanics and Engineering, vol. 422, p. 116710, 2024.

G. Senatore, F. Virgili, and L. Blandini, "Global Optimal Actuator Placement for Adaptive Structures: New Formulation and Benchmarking," Journal of Intelligent Material Systems and Structures, 2025.

Joint Research Centre (European Commission), P.B. Lourenco, T. Maloutas, M. Santamouris, B. Widera, F. Ansaloni, C. Balaras, I. Katurić, D. Kolokotsa, T. Rossetto, G. Senatore, A. Tomaszewicz, E. Medeiros, K. Gkatzogias, D. Pohoryles, E. Romano et al., "A practical guide to the New European Bauhaus self-assessment method and tool", Publications Office of the European Union, 2024.

覆 0 A. P. Reksowardojo, G. Senatore, M. Bischoff, and L. Blandini, "Design and control of high-speed railway bridges equipped with an under-deck adaptive tensioning system," Journal of Sound and Vibration, vol. 579, p. 118362, 2024.

G. Senatore, "Force-serial and Force-parallel Actuation Placement for Topology Optimization of Adaptive Structures," presented at the International Association for Shell and Spatial Structures, Zurich, 2024.

K. A. Canny, G. Senatore, and L. Blandini, "Investigation of retrofitting strategies to extend the service life of bridge structures through active control," Journal of Bridge Engineering (ASCE), 2024 (in

press).

DOI

A.P. Reksowardojo, G. Senatore, M. Bischoff, L. Blandini, "Design and control benchmark of rib-stiffened concrete slabs equipped with an adaptive tensioning system," Journal of Structural Engineering (ASCE), vol 150, 2023.

A.P. Reksowardojo, G. Senatore, "Design of ultra-lightweight and energy-efficient civil structures through shape morphing," Computers & Structures, vol. 289, p. 107149, 2023.

Publications www.gennarosenatore.com/publications

Y. Wang and G. Senatore, "Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures," International Journal of Solids and Structures, vol. 202, pp. 798-815, 2020.

Full Text

G. Senatore and A. P. Reksowardojo, "Force and shape control strategies for minimum energy adaptive structures," Frontiers in Built

A. P. Reksowardoio and G. Senatore, "A proof of equivalence of two force methods for active structural control," Mechanics Research Communications, vol. 103, p. 103465, 2020.

G. Senatore, P. Duffour and P. Winslow, "Synthesis of Minimum Energy Adaptive Structures," Structural and Multidisciplinary Optimization, vol. 60, no. 3, pp. 849-877, 2019.

Q. Wang, G. Senatore, K. Jansen, A. Habraken and P. Teuffel, "Multi-Scale Experimental Testing On Variable Stiffness And Damping Components For Semi-Active Structural Control," Composite

A. P. Reksowardojo, G. Senatore and I. F. C. Smith, "Experimental testing of a small-scale truss beam that adapts to loads through large shape changes," Frontiers in Built Environment, vol. 5, no. 93,

Q. Wang, G. Senatore, K. Jansen, A. Habraken and P. Teuffel, arthquake Engineeri Structural Dynamic "Seismic Control Performance of a 3-Story Frame Prototype

Equipped with Semi-Active Variable Stiffness and Damping Structural Joints," Earthquake Engineering and Structural Dynamics,

